Перейти к содержанию

Лидеры

  1. selco

    selco

    Мастер


    • Баллы

      17

    • Постов

      9 765


  2. welderman

    welderman

    Модератор


    • Баллы

      7

    • Постов

      3 665


  3. aleks 555

    aleks 555

    Участник


    • Баллы

      5

    • Постов

      321


  4. hvr63

    hvr63

    Участник


    • Баллы

      5

    • Постов

      902


Популярный контент

Показан контент с высокой репутацией 27.12.2022 во всех областях

  1. И коллектор сегодня подогнали от Фольксваген , починили , Панч , и не плохо варился . Вот включил ДРЛ лампу и фотик все перевел в зеленый фон .
    6 баллов
  2. Игорь , ДРУГ ,,,,, ну не хотел я тебя ставить в неловкое положение ну видит бог не хотел , тем паче вы с Виктором Точмаш правы на ответственных и сильно нагруженных деталях не стоит варить не Д16 не В95. Вот я беспокойный и всю жизнь что то ищу и экспериментирую , но может это и к лучшему , как в песне "кто ищет - тот всегда найдет " может и приключений на свою Ж.. , да ладно и вот сегодня я сломал два цилиндрика В95Т кои вчера варил , зажал в тески покрепче и боялся что тески разлетятся , но нет они "старой закалки" СССР вроде 1961 год , взял трубу 09г2с с 3ММ стенкой примерно один метр , надел на цилиндрик и рванул , страшный щелчок и цилиндрики разъединились по околошовной зоне , кстати варил 5356 вчера их , в общем как пружина и структура мелкозернистая . Конечно корешок я не совсем проварил но думаю это роли не играет и все равно оторвал бы . Видео будет но пока не до него но вот пару фоток покажу . Ну и немного о том что написано в книгах , написано все верно но вот при сварке не трещать и не дают трещин эти сплавы , может только на длинных швах и это надобно проверить чем и займемся в свободное время ,,,, варятся хорошо но вот околошовная зона да "слабое звено" получается , как то так все .
    5 баллов
  3. Да пропустил , но не много . Вот меня "отчитали " чуток что бы "воду не мутил , но не я один и полно роликов где варят Д16 и вот даже 6061 и тот добрался до 2024 аналог Д16 . Да ладно и вот специально видео сделаю , вчера токарил (между основным занятием и вчера снег был с крыши скатился самосвал ) , сегодня варил В95 и сутки на старение а завтра ломать будем трубой . Но вот нет трещин как корневого так и облицовки под лупой смотрел да и не какого "постороннего шума" типа треск нет , да и ванна спокойная блестит как зеркало в общем не чита многим АК сплавам кои сейчас "возмущаются" с поводом и без повода . пару фоток пока для затравки . ЗЫ , опять меня "отчитают" , да и пусть но зато интерес думаю у многих есть и форум оживляется , ну и без этих "дебатов" форум без зубый и скучный , как то так . уж извиняйте если что .
    5 баллов
  4. ауди,дырочка,заплаточка,проверка на керосин.
    3 балла
  5. Из личного опыта сварки В95. Речь пойдет о деталях из сплава 7075Т6 и для простоты будем считать его аналогом В95. В полный рост я видел применение этого сплава на мотоциклах. Кстати, в советское время стаканы передней вилки Иж Планета Спорт были из В95. Самое широкое применение сплава 7075Т6 - на кроссовых мотоциклах. Из этого сплава там (в стандартной комплектации): руль; стаканы передней вилки; ободья колес; некоторые кронштейны. Из всего этого мне доводилось ломать только ободья колес. Рули я только гнул, но видел и как рули ломали. Про ободья. Лента обода сварена контактным способом и потом закалена и искуственно состарена (я это доподленно не знаю, но есть все основания предполагать). Один раз сломал передний обод. Наехал очень сильно на острый край ямы и обод сломался по сварному шву, сломался почти с полным разделением. Я правда этого даже не заметил, увидел потом, когда мотоцикл мыл после гонки. Уже потом все обстоятельства вспоминал и вспомнил что слышал какой-то звонкий щелчок. На кроссовом мотоцикле резина очень жесткая, к тому же я ехал на старой, задубевшей как камень Питерской резине, так что даже сломанному пополам ободу деваться из резины некуда. Обод мне заварили (варил не сам, я тогда еще не был "сварщиком"). Варили два раза, так как трещал. В те времена запчасти стоили очень прилично дорого и сварка для меня была безальтернативным вариантом. Так на вареном и ездил до продажи мотоцикла. Обод в последствие по сварке не трещал. Второй сломанный обод был задним. Трещина была на треть от ширины обода. Времена изменились и я смог себе позволить заказать новый, но пока он шел с пендосии, нужно на чем-то было ездить на тренировку. Пришлось варить этот. Варил опять не я. Варили его три, или четыре раза. Обод постоянно трещал по околошовной зоне. В конце концов удалось заляпать. В последствии (несколько тренировки откатал) образовалась небольшая трещина но я успел накататься до приезда нового обода. Обод оставил себе на добрую память, теперь всем показываю как обращаться с 7075Т6. Фото сделаю попозже. Про риски. Я был готов ко всему (у меня пружина в задней подвеске на ходу ломалась и ничего). Я это все к чему? Да сам не знаю.
    3 балла
  6. Валерий, вот ты меня поставил в неловкое положение :)),два раза сходил покурил ,толи выбрать сторону друга и поддержать (доказать обратное вопреки материаловеденью,что мне не сложно сделать, умолчав нюансы и даже видео создать на подобе 6061) толи всё же придерживаться науки ,лавируя между тобой и наукой :)). Я и сам всегда топлю за то что учебники очень отстают от нынешних возможностей современных аппаратов и оборудования,к примеру если указана сварка частичная(а значит точечная),то в полне можно воспользоваться пульсом на малых герцах,либо установить безконечный спот режим с быстрой частотой,либо, как я расказывал в своем видео про сварку велосипедной рамы сплава 6061Т6(кстати присадки 6ХХХ серии не существует и своим телом этот сплав не сваривается,по той же причине растрескивания,но можно обойти этот момент о чем я говорил в видео про правильную подачу присадки)Но тут чуть не тот случай и существует необходимая таблица для понимания процесса. ( сделаю видео в дальнейшем на эту тему) Вообщем повторюсь,одно дело ремонтная сварка и опыт мастера обходить некоторые условности,другое дело технологии ,маштабы и ответственностные конструкции,простыми словами с такими сплавами и материалами,никто не будет нарушать технологий в ответственных отраслях авиапромышленности,судостроении т.д. Другое дело в ремонтных мастерских,где многое зависит от опыта,знаний,умения,практики самого сварщика, его оборудования и технических возможностей.
    3 балла
  7. Не надо. Это описание - максимально облегчённая для понимания неподготовленным человеком модель. Вы же преподаватель, с методикой преподавания знакомы. Если расписывать подробно, то можно дойти до уровня понимания разработчика современных ПА. Но тогда новичку, как не было понятно, почему ток подачей регулируется, так и не будет. Саня все правильно написал, это результат повторяющих однотипных вопросов от новичков. Я неоднократно на них отвечал, Саня отвечал, надоело одно по одному мурыжить. Если есть желание сделать более корректное и подробное описание работы ПА - что мешает. Будет ещё одна закрепленая тема. Сначала изучают уравнение состояния идеального газа, потом реального. Сначала механика по Ньтону, потом и до Эйнштейна доходят.
    2 балла
  8. А то-в техникуме у меня станок был кромкострогальный-студиозусы ломали три раза раму из Al-сплава под 30 град.-первый раз без термообработки рама отходила 5 условных часов, два последующих раза-после гомогенизационного отжига-более 30...
    2 балла
  9. очередная гбц змз 409.предподогрев,ток 140а,электрод 3,2мм,газ 10л пруток 4043 3мм.уже была варенная,и как ни старался но мелкие поры присутствуют.
    2 балла
  10. Замена адаптеров. Сварка и пайка соединений.
    2 балла
  11. Такое разрушение называется "рассыпалось само", или говоря по полунаучному - хрупкое разрушение.. Я вот кованый рычаг кик-стартера также варил, тоже после сварки "рассыпался". А сам рычаг я пытался слегка переподзагнуть кувалдой, я думал я тиски с верстака снесу, а загнул на пару градусов.
    1 балл
  12. Сергей, что ж тут непонятного-то, коррекция режима возможна в следующих вариантах-по напряжению-крутим ручку-U растёт/падает=меняется длина дуги-ток-const....естественно, идеализируем всё... коррекция по подаче-крутим в +-=меняется длина дуги вместе с током-U const... весь этот перфоманс возможен как стабильный процесс без пердежа и стрельбы-в очень нешироких пределах.. в обоих вариантах.. За стабильность подачи здесь не говорим-она у нас по умолчанию без проблем...
    1 балл
  13. https://www.kryptobike.ru/velo/alyuminievye-splavy-dlya-velosipednyx-ram-sovremennye-alyuminievye-splavy
    1 балл
  14. Как бы старение то тут особо не поможет-у тебя хрупкое разрушение. тут бы пластичность увеличить... пихнуть в печку на часов до 40 под 450 +- с остыванием вместе с печью..
    1 балл
  15. Поставить сверху клепки ремонтный бандаж с резиной
    1 балл
  16. Сергей , да померить нечем . Вот вмятинка такая приличная осталась от рывка , тиски сильно не зажимал, в общем пища есть к размышлению и думаю повторю эксперимент со временем изменив нечто в шве и продольные добавлю да и "постареть" ей дам поболее , у нас отливки свежие на заводе под забор складывали под дождь и солнце минимум на полгодика и всегда состарившихся был задел .
    1 балл
  17. Да надо Глобулу тоже попинать-за точность формулировок-чтобы не смущать юных падаванов... надо было добавить-ток в цепи растёт-...до ОПРЕДЕЛЁННОГО ПРЕДЕЛА.....Более ни слова, надоело....
    1 балл
  18. Всё, в последний раз-сколько можно... Антон, вот вы специалист в электрике, неужели Вы не видите некоторых,...мм, несоответствий*/неточностей в некоторых текстах? Их пишут люди, людям свойственно ошибаться-причем автор данного текста сначала издал свой опус на украине, потом перебрался в Россию-и издал снова-с некоторыми изменениями в составе авторов-ничего личного, просто бизнес, если бы не читал первую версию-вторую -принял бы на веру... Изменение подачи без изменения напряжения приводит к изменению тока в узком диапазоне.. это просто коррекция режима, не более того, возможна как по напряжению, так и по подаче.. мощность зависит от тока в соотношении... сами найдёте..... Для повышения мощности в более широком диапазоне необходимо изменение и напряжения и скорости подачи проволоки-производная -ток и соответственно -мощность процесса... что тут волшебного ? Вы пост Глобула прочитали или как? В оконцовке-мне это надоело, далее как хотите-пусть у Вас и ток , и подача проволоки, и напряжение в МИГ/МАГ -это разные регулировки.... причем ток и подача при помощи фиксиков как -то связана друг с другом-но как-ХЗ.... Да , в посте про фрезерованную железку имелась в виду коррекция скорости за счёт изменения передаточного числа заменой шестерёнок в подающем устройстве-так было ранее...
    1 балл
  19. Да уж, Валера, неуёмный ты! ...все думаю в гости напроситься, ума-разума набраться, чайку попить...
    1 балл
  20. Спасибо Алексею tehsvar за помощь в покупке уникального аппарата
    1 балл
  21. Баланс 15 Баланс 27 Баланс 40 При каждой настройке баланса длина шва около 70-100 мм. При 26-29 вполне комфортно : и очистка ,и прогрев ,и электрод..На этом и остановился. Параметры выше,кроме баланса.
    1 балл
  22. Горелка у меня водяная.Предприятие то серьезное)))
    1 балл
  23. Парни извиняюсь, вижу запоздал я со своим обещанным видео про аргон для TIG сварки, видимо пропустил увлекательный замес дебатов по сплавам,уже всё почистили и привели в порядок,тогда уже не буду ворошить и влазить,так не видел и пропустил тему,(но чешется ,добавлю только, что не путаем сварочные конструкции из каких либо сплавов и их прочностные характеристики и ремонтное небольшое место в сварке.) Поэтому существуют клепанные конструкции и на основе сварки. Ещё хочу добавить что для некоторых видов сплавов 2ХХХ серии существуют присадка 2319. Ещё раз извиняюсь,что редко присутствую и так же затягиваю с видео, работ не в проворот, на своей фирме и ещё я сварщик демонстратор фирмы Kemppi в Латвии. Времени просто катастрофически не хватает. Вообщем собрал из пару фрагментов не очень удачных для такого смысла видео, MISON Ar+NO-0.03 .
    1 балл
  24. Открою страшную тайну-фундаментальные принципы первых ПА и нынешних не изменились Такое ощущение, что в общем-то не новички на форуме и в профессии просто прикалываются в теме..
    1 балл
  25. Сварка алюминия. Основы. Свариваемые и несвариваемые алюминиевые сплавы Алюминиевые сплавы сваривают в основном дуговой сваркой в среде инертных газов, неплавящимся или плавящимся электродом, обычно – аргонно-дуговой сваркой. Большинство алюминиевых сплавов легко подвергаются сварке. Однако для некоторых алюминиевых сплавов дуговую сварку не применяют никогда. Почему? Рассмотрим кратко различные серии деформируемых алюминиевых сплавов с точки зрения их свариваемости. Свариваемые алюминиевые сплавы Серия 1ХХХ. Технически чистый алюминий (не менее 99 %). Применяется, в основном, в качестве проводника электрического тока или для изделий с высокой коррозионной стойкостью. Все эти сплавы (марки алюминия) легко свариваются. В качестве сварочного сплава чаще всего применяют сплав 1100 (алюминий марки АД по ГОСТ 4784 на деформируемые алюминиевые сплавы). Серия 3ХХХ. Эта серия включает среднепрочные алюминиевые сплавы, которые легко поддаются формовке. Часто применяют для теплообменников и кондиционеров. Все эти сплавы легко свариваются сварочными алюминиевыми сплавами 4043 или 5356 (аналоги по ГОСТ 4784 – сварочные сплавы СвАК5 и СвАМг5). Серия 4ХХХ. Эти алюминиевые сплавы обычно применяют в качестве сплавов для сварки или пайки. Однако иногда они могут использоваться и как свариваемые материалы. В этом случае их сваривают сплавом 4043 (СвАК5). Серия 5ХХХ. Это серия алюминиевых сплавов в основном для высокопрочных листов и плит. Все они легко свариваются с применением сварочного сплава 5356 (СвАМг5). Для наиболее прочных сплавов, таких как 5083 (АМг4,5), применяют сплавы 5183 или 5556. Серия 6ХХХ. Это – алюминиевые сплавы, главным образом, для прессованных профилей, хотя их также применяют и для листов и плит. Они являются склонными к горячему растрескиванию при сварке. Однако при должной технологии они все довольно хорошо свариваются со сварочными сплавами 4043 и 5356. См. Алюминиевые сплавы: классификация Несвариваемые алюминиевые сплавы А где же знаменитые высокопрочные алюминиевые сплавы серий 2ХХХ и 7ХХХ? Почему не в первых рядах по сварке? А вот почему! Серия 2ХХХ. Эти высокопрочные аэрокосмические алюминиевые сплавы («дюрали») применяют в основном в виде листов и плит. Их химический состав делает большинство из них не свариваемыми методами дуговой сварки из-за их большой склонности к горячему растрескиванию. Исключение составляют сплавы 2219 и 2519, которые хорошо свариваются с применением сварочных сплавов 2319 или 4043. Свариваемость этим сплавам дает почти полное отсутствие в них магния. Аналогом этих двух сплавов является отечественный алюминиевый сплав Д20, из которого делают высокопрочные свариваемые плиты. Популярный за свою высокую прочность сплав 2024 (Д16 по ГОСТ 4784) никогда не сваривают дуговой сваркой, так как он чрезвычайно подвержен горячему растрескиванию при сварке. Серия 7ХХХ. Это тоже серия высокопрочных аэрокосмических алюминиевых сплавов. Подобно сплавам серии 2ХХХ большинство из них не свариваются методами дуговой сварки из-за горячего растрескивания и склонности к коррозии под напряжением. Исключениями являются сплавы с минимальным содержанием меди – менее 0,1 %. Это сплавы 7003 и 7005 (наш 1915) для прессованных профилей и сплав 7039 для листов. Все трое сплавов хорошо свариваются с применением сварочного сплава 5356. Почему не сваривают дюрали? Основная причина горячего растрескивания при сварке «несвариваемых» алюминиевых сплавов серий 2ХХХ и 7ХХХ заключается в следующем. В ходе сварки в зоне шва – зоне термического влияния – по границам зерен выделяются компоненты сплава – эвтектики и интерметаллиды – с температурой плавления ниже, чем у основного сплава. Это понижает и расширяет температурный интервал затвердевания границ зерен. Поэтому, при дуговой сварке этих типов сплавов границы зерен затвердевают последними и, вследствие этого, легко растрескиваются под воздействием усадочных напряжений. Мало того, это приводит к увеличению разности гальванических потенциалов между границами зерен и остальной зеренной структурой, что делает границы зерен более подверженными коррозии под напряжением. Когда заклепки лучше сварки По всем этим причинам алюминиевые сплавы серий 2ХХХ и 7ХХХ чаще соединяют механически, чем сваривают. Иногда применяют контактную сварку, а также сварку трением. Сварка трением «работает» при значительно более низких температурах, чем дуговая, не расплавляет основной металл и поэтому исключает проблемы, связанные с затвердеванием. Источники: Aluminum and Aluminum Alloys, J.R. Davis, Ed., 1996. G. Mathers, The Welding Aluminium and its Alloys, Woodenhead Publishing Ltd, 2002. Дуговая сварка алюминия: выбор сварочного сплава При дуговой сварке алюминия и его сплавов может применяться довольно большое количество сварочных материалов, как отечественных, так и зарубежных. Выбор сварочного сплава для сварки алюминия Японская корпорация KOBE STEEL в своем руководстве по дуговой сварке алюминия и алюминиевых сплавов дает рекомендации по выбору подходящего сварочного сплава из тех, которые представлены в японском стандарте JIS Z 3232 (таблица). Цифровые обозначения сплавов совпадают с обозначениями стандартов ISO и EN, а также имеют широкое применение в России и ее окрестностях. Принимаются во внимание следующие факторы: склонность к образованию трещин; прочность шва при растяжении; пластические свойства сплава; коррозионная стойкость; сочетание оттенков цветов шва и основного металла после анодирования. Среди всех сварочных материалов, наиболее часто применяют алюминиевые сплавы 4043 и 5356. Ниже представлены основные моменты, на которые надо обращать внимание при выборе сварочного материала. Алюминиевый сварочный сплав 4043 Сплав 4043 проявляет высокое сопротивление образованию горячих трещин и поэтому хорошо подходит для сварки сплавов серии 6ХХХ, а также алюминиевых отливок. Его недостатки: 1) материал шва имеет низкую пластичность и 2) из-за высокого содержания кремния его цвет после анодирования плохо сочетается с цветом сплавов серий 5ХХХ и 6ХХХ. Кроме того, сплав 4043 не подходит для сварки сплавов серии 5ХХХ с высоким содержанием магния (3 % и более), поскольку в этом случае в металле шва образуется чрезмерно много интерметаллидных частиц Mg2Si, что снижает его пластичность и повышает склонность к образованию трещин. Алюминиевый сварочный сплав 5356 Сплав 5356 широко применяется для сварки сплавов серии 5ХХХ (например, популярного сплава 5083) и сплавов серии 6ХХХ (например, 6061). Потребление этого сплава составляет более половины всего мирового объема потребления алюминиевых сварочных сплавов. Сплав 5356 содержит небольшое количество титана, чтобы обеспечить мелкую микроструктуру и тем самым улучшить механические свойства металла шва. Если нужно хорошее совпадение цветов шва и основного металла, например, в декоративных или строительных изделиях, применяют сварочный сплав 5356. Алюминиевый сварочный сплав 2319 В большинстве сварных соединений конструкций из алюминия и алюминиевых сплавов металл шва не является термически упрочняемым сплавом или только незначительно термически упрочняется за счет образования твердого раствора легирующих элементов в основном металле. Поэтому, когда сварные конструкции из термически упрочняемых сплавов после сварки должны подвергаться термической обработке, выбор сварочного материала весьма ограничен. При сварке сплавов 2219 и 2014 термически упрочняемый сварочный сплав 2319 обеспечивает максимальную прочность сварного шва. Алюминиевые сварочные сплавы 5183, 5356, 5556 и 5654 Сварочные сплавы 5183, 5356, 5556 и 5654, которые имеют номинальное содержание магния более 3 %, не подходят для изделий и конструкций, которые работают при температурах выше 65 °С, поскольку могут быть подвержены растрескиванию под напряжением. Сварочный сплав 5554 и все другие сплавы, представленные в таблице кроме перечисленных выше, подходят для работы при повышенных температурах. Алюминиевые сварочные сплавы 4043 и 4047 Алюминиево-магниевые сварочные сплавы обладают высокой стойкостью к общей коррозии, когда применяются при сварке алюминиевых сплавов с близким содержанием магния. Однако сварочные сплавы серии 5ХХХ могут быть анодными к алюминиевым сплавам серий 1ХХХ, 3ХХХ и 6ХХХ. Поэтому при работе в воде или влажной среде металл шва сам будет подвергаться коррозии и защищать от коррозии основной металл. Это будет происходить с различной скоростью в зависимости от разности электрических потенциалов металла сварочного шва и основного металла. В этом случае алюминиево-кремниевые сварочные сплавы, такие как сплавы 4043 и 4047, будут более предпочтительными с точки зрения коррозионной стойкости, чем сплав 5356 при сварке, например, конструкции из сплава 6061. Именно поэтому, по-видимому, сварочный сплав 4043 применяется для сварки велосипедных рам из алюминиевого сплава 6061. Источник: The Arc Welding of Nonferrous Metals, KOBE STEEL, LTD, 2011 Горячее растрескивание при сварке алюминиевых сплавов У металлических сплавов известны несколько механизмов растрескивания. К счастью, к алюминиевым сплавам многие из них, например, водородное растрескивание, которое еще называют «холодным растрескиванием», не относятся. Почти все трещины в сварочных швах при дуговой сварке алюминиевых сплавов возникают из-за горячего растрескивания. А именно: трещины возникают в сварном шве при его затвердевании в результате воздействия усадочных напряжений на его микроструктуру. Влияние химического состава алюминия Чтобы понять, почему алюминиевый сварной шов растрескивается и как выбор сварочного сплава (сварочного прутка) влияет на склонность к растрескиванию, очень полезно взглянуть на рисунок.Этот рисунок показывает влияние четырех различных легирующих добавок – Si, Cu и Mg, а также Mg и Si в виде Mg2Si – на склонность алюминиевого сплава к образованию горячих трещин при затвердевании. Важно отметить, что все легирующие добавки влияют на склонность к образованию трещин аналогичным образом. С увеличением концентрации добавки склонность к растрескиванию возрастает, достигает максимума и затем снижается до относительно низкого уровня. Большинство алюминиевых сплавов, которые считаются не свариваемыми без сварочного прутка, имеют в химическом составе хотя бы одну легирующую добавку с концентрацией вблизи пика склонности к растрескиванию. Сплавы, которые показывают незначительную склонность к образованию трещин, оказывается, имеют химический состав, который далек от этих пиков. Действительно, склонность сплавов к растрескиванию зависит в основном только от их химического состава. Выбор сварочного материала Аналогично склонность к растрескиванию в ходе сварки зависит в основном от химического состава сварочной «ванны». Поэтому, принцип выбора сварочного материала заключается в следующем. 1) Для материалов, которые проявляют низкую склонность к образованию трещин нужно применять сварочный материал с аналогичным химическим составом. 2) Для материалов, которые проявляют высокую склонность к образованию трещин нужно применять сварочный материал, который значительно отличается от них по химическому составу, с тем, чтобы попытаться получить химический состав шва вдали от пика растрескивания. Выполнение этого принципа можно проследить при рассмотрении сварочных материалов, которые применяют при сварке сплавов серий 5ХХХ и 6ХХХ. Сварка сплавов алюминий-магний Большинство сплавов серии 5ХХХ проявляют низкую склонность к растрескиванию. Их можно сваривать вообще без сварочного прутка. Пик склонности к растрескиванию находится примерно при 1,5 % Mg. Все сплавы серии 5ХХХ, кроме сплава 5052 (АМг2,5 по ГОСТ 4784), содержат значительно больше магния, чем 1,5 % и находятся поэтому вдали от пика растрескивания. Однако сплав 5052 лежит по магнию прямо на пике растрескивания и, действительно, проявляет довольно высокую склонность к растрескиванию. При выборе материала сварочного прутка для сплавов серии 5ХХХ общим правилом (кроме сплава 5052) является применение в качестве сварочного сплава серии 5ХХХ с немного большим содержанием Mg, чем в основном (свариваемом) сплаве. Для сплава 5052 применяют сварочный сплав с намного большим содержанием магния, такой как 5356 с 5 % Mg. Это дает большой «сдвиг» содержания магния в затвердевающем сварном шве в сторону от пика растрескивания. Сварка сплавов алюминий-магний-кремний Большинство сплавов серии 6ХХХ – сплавов системы Al-Mg-Si – являются очень чувствительными к растрескиванию. Действительно, их химический состав как раз попадает почти на пик, показанный на нижнем графике рисунка. Ни один из этих сплавов нельзя сваривать без сварочного прутка или со сварочным прутком того же химического состава. Если попытаться сделать это, то они будут растрескиваться каждый раз, если к сварочному шву не приложить значительные сжимающие напряжения, как это делается при контактной точечной сварке. Поэтому выбор сварочного материала для этих склонных к растрескиванию сплавов 6ХХХ заключается в применении сварочных сплавов с таким химическим составом, чтобы получить сварочный шов с химическим составом вдали от пика растрескивания. Для этого применяют сварочные сплавы или с высоким содержанием Mg, например, 5356, или с высоким содержанием Si, обычно – сплав 4043. По этой причине не бывает сварочного прутка из сплава 6061. А если бы он был и мы применили бы его для сварки сплава 6061, то сварочный шов неизбежно бы растрескался. Только со сварочным прутком! Важно помнить, что большинство сплавов серии 6ХХХ нельзя сваривать без сварочного прутка. Более того, даже при сварке со сварочным прутком, если подавать его в недостаточном количестве, также возможно возникновение трещин. Источник: Aluminum and Aluminum Alloys, ed. J.R. Davis Чем сваривать алюминиевый сплав 6061-Т6? Для дуговой сварки алюминиевого сплава 6061-Т6 применяют два сварочных сплава: 5356 и 4043. Их аналоги по ГОСТ 4784 и ГОСТ 7871 – СвАМг5 и СвАК5. Каждый из них имеет преимущества и недостатки в зависимости от условий их применения. Прочность или легкость сварки? Как алюминиевый сплав, содержащий 5 % магния, сплав 5356 обычно более прочный и пластичный, чем сплав 4043. Однако сплав 4043, который содержит 5 % кремния, имеет лучшую текучесть, лучшую стойкость к образованию трещин, большее удобство сварки, меньшую склонность к образованию сварочного темного налета и дает сварочному шву более эстетичный вид. Зона термического влияния сварного шва Возникает вопрос: если сплав 5356 прочнее, то нельзя ли применять его всегда? Ответ: нет. Хотя сплав 5356 и прочнее, чем 4043, они оба прочнее, чем самый слабый участок так называемой «зоны термического влияния» стыкового сварного шва сплава 6061-Т6. Этот сварной шов сломается именно в этой зоне – не по сварочному шву – и прочность этой зоны не зависит от примененного сварочного сплава. Сварка угловых швов Другая ситуация возникает для угловых швов. Эти сварные швы чаще всего работают на сдвиг, а не на растяжение, как стыковые швы. Угловые швы почти всегда разрушаются по металлу сварочного шва, и тут может подойти сплав 5356, который имеет прочность на сдвиг почти в полтора раза выше, чем сплав 4043. Коррозионное растрескивание В тоже время, сплав 4043 является менее склонным к растрескиванию, чем сплав 5356. Если сварное изделие будет термически обрабатываться после сварки, то нужно применять сплав 4043, так как после термической обработки сплав 5356 может быть склонным к коррозионному растрескиванию под напряжением. Аналогично, если сварное изделие будет работать при температуре выше 65 °С, необходимо применять сплав 4043 во избежание коррозионного растрескивания под напряжением. Анодирование сварного шва Однако, если изделие будет подвергаться после сварки анодированию, то лучше применять сплав 5356. Высокое содержание кремния сплава 4043 будет причиной темного сварного шва, что сделает его видимым и непривлекательным. Сплав 5356 проанодируется в серебристый цвет. Источник: F. Armao, www.thefabricator.com https://aluminium-guide.com/ Некоторые особенности сварки алюминия.Коэффициент разупрочнения сваркой основного металла. При аргоно-дуговой сварке алюминиевых сплавов встречаются различные дефекты: газовая пористость, окисные пленки, вольфрамовые включения, трещины, несплавление и смещение кромок и пр. Основные из них — газовая пористость (—48%) и окисные пленки (~34%). Опасный дефект — кристаллизационные (горячие) трещины. Газовая пористость. Получение плотных швов при сварке алюминия и его сплавов более сложно, чем при сварке других металлов. Образующаяся на поверхности алюминия и его сплавов окисная пленка активно адсорбирует влагу. При нагреве влага реагирует с металлом, в результате чего происходит диссоциация пара с выделением водорода — основного источника пор в сварных швах. Причинами пористости являются: газонасыщенность основного материала и присадочной проволоки, присутствие влаги на поверхности материала и в защитной среде, нестабильность протекания процесса сварки. Исследования, выполненные в области газовой пористости, определили два основных направления в разработке средств повышения плотности сварного соединения: 1) уменьшение водорода вследствие эффективной обработки поверхности исходного металла (химическое травление, шабрение, термообработка в вакууме или в аргоне и пр.); 2) уменьшение водорода в результате эффективного воздействия на условия кристаллизации сварочной ванны (погонная энергия, двухдуговая сварка, магнитное перемешивание и др.). Окисные пленки — опасный дефект в сварном соединении. Значительный брак по окисным пленкам наблюдается при сварке тонколистовых деталей с расположением плен в корне шва. Несмотря на эффективное воздействие катодного распыления при аргоно-дуговой сварке разработка средств и методов по устранению окисных пленок в сварном шве в настоящее время остается актуальной. Разработка различных способов химической обработки поверхности металла позволяет оперативно воздействовать на структуру окисной пленки и ее толщины. Так, подтверждено эффективное воздействие на величину окисной пленки химической полировки и электрополировки. Кристаллизационные (горячие) трещины. Одна из основных проблем при сварке сплавов на алюминиевой основе — склонность материала к трещинообразованию. А. А. Бочвар, Н. Н. Рыкалин, Н. Н. Прохоров, И. И. Новиков и Б. А. Мовчан обобщили основные положения исследований горячих трещин при сварке и литье. Они отмечают, что сопротивляемость образования кристаллизационных трещин при сварке и литье определяется тремя характеристиками: величиной «эф фективного» интервала кристаллизации, пластичностью в этом интервале и темпом деформации. Таким образом, изменяя химический состав основного металла и сварочной проволоки, представляется возможным оказывать влияние на эффективный интервал кристаллизации и пластичность. Что касается темпа деформации, то он в основном предопределяется процессом сварки и условиями его выполнения. Вольфрамовые включения. При стабильном горении дуги вольфрамовый электрод практически не расплавляется. Однако незначительный расход его все же имеет место. Зависит он от многих факторов: активирующих присадок, токовой нагрузки, чистоты и расхода инертного газа, числа зажиганий или коротких замыканий дуги. Частицы вольфрама, попадая в сварочную ванну, загрязняют сварной шов. Они являются инородным телом в наплавленном металле и ухудшают работоспособность сварного узла. С введением активирующих добавок возрастает эрозионная стойкость вольфрама при сварке в аргоне на переменном токе. Введение оксида лантана (—3 %) или оксида иттрия (~3 %) снижает электродные потери в 1,5—2 раза по сравнению со сваркой с электродом из чистого вольфрама. Эффективным средством повышения стойкости вольфрама следует признать сварку в импульсном режиме. Дефекты, допустимые без исправления. Кристаллизационные (горячие) трещины и окисные пленки, обнаруженные в сварном соединении, подлежат обязательному устранению. Поры, вольфрамовые включения, раковины и другие дефекты допускаются без исправления в конструкции в определенном количестве и объеме. Термически неупрочняемые алюминиевые сплавы Применяемые в промышленности алюминиевые термически неупрочняемые сплавы имеют относительно невысокие механические свойства в отожженном состоянии. Нагартйвка сплавов данной группы повышает их прочностные характеристики. Однако при сварке в зоне термического влияния происходит разупрочнение. Временное сопротивление при растяжении сварного соединения приближается к временному сопротивлению отожженного материала. Для упрочнения зоны термического влияния в настоящее время применяют достаточно эффективный метод холодной и тепловой прокатки сварного соединения. Недостаток его — невозможность использования для сварных изделий сложной конфигурации. В последнее время в промышленности нашло применение химическое фрезерование листового нагартованного материала, позволяющее получать равнопрочными сварное соединение и основной металл вследствие утолщения свариваемых кромок. Толщину зоны утолщения устанавливают расчетным путем, исходя из условий равнопрочности сварного соединения и основного металла. Ширину зоны утолщения определяют экспериментально и она зависит от способа сварки и толщины свариваемого материала. Временное сопротивление при растяжении стыкового сварного соединения с усилением из алюминиевых деформируемых сплавов, не упрочняемых термической обработкой, зависит от способа сварки, толщины свариваемого материала, дефектов, допустимых без исправления, и определяется коэффициентом разупрочнения основного металла при сварке. Ниже приведены значения коэффициента разупрочнения бв/бв (бв — временное сопротивление основного металла в отожженном состоянии) в зависимости от толщины материала при ручной и автоматической дуговой сварке неплавящимся электродом: http://metallicheckiy-portal.ru/imgart/st086/st086-0061-1.jpg Временное сопротивление сварных соединений из нагартованного материала определяется коэффициентом разупрочнения и временным сопротивлением материала в отожженном состоянии, так как в переходной зоне сварного соединения происходит локальная термообработка — отжиг. Алюминий. Алюминий марок АД1 и АД обладает хорошей свариваемостью при аргоно-дуговой сварке и почти не склонен к образованию кристаллизационных http://metallicheckiy-portal.ru/imgart/st086/st086-0061-2.jpg трещин. Коэффициент трещинообразования при сварке крестовой пробы (проволока Св. АВ00, Св. А1) на материале толщиной 2 мм составляет 5 %. При сварке крестовой пробы оценку свариваемости проводят по коэффициенту трещинообразования К: при К < 10 % —хорошая, при К—10—20% — удовлетворительная, при К> 20 % — неудовлетворительная. Алюминий и его сварные соединения обладают повышенной пластичностью и сравнительно низкой прочностью (бв = 60—70 МПа) в отожженном состоянии при высокой коррозионной стойкости. Сплавы системы А1—Мп. Введение марганца сохраняет высокие пластические свойства, коррозионную стойкость и свариваемость алюминия. При сварке крестовой пробы сплава АМц коэффициент трещинообразования составляет —7 %. Для сварки изделий из сплава АМц неплавящимся (вольфрамовым) и плавящимся электродами рекомендуется сварочная проволока марки Св.АМц. Сварные соединения сплава АМц при высокой коррозионной стойкости и хорошей технологической пластичности имеют низкую прочность (бв = 100—110 МПа). Сплавы системы Al—Mg. Временное сопротивление бв сварных соединений сплавов данной системы в основном зависит от количества присутствующего в них магния и марганца, а именно: AMrl 100 МПа; АМг2 170; АМгЗ 200; АМг4 230; АМг5 250 и АМгб 300 МПа. Сплавы АМгЗ, Амг4 и АМгб обладают хорошей свариваемостью при аргоннодуговой сварке. Удовлетворительную свариваемость имеют и сплавы AMrl, АМг2 и АМг5. Коэффициент трещинообразования при сварке крестовой пробы сплавов в отожженном состоянии составляет, %: для сплава AMrl —12; АМг2 —15; АМгЗ ~6; АМг4 ~10; АМг5 ~12; АМг6 ~8. Во всех случаях при сварке использовали проволоку основного металла, за исключением сплава АМг2 (проволока Св.АМгЗ). Коррозионная стойкость сварных соединений сплавов AMrl, АМг2, АмгЗ и АМг4 высокая, сплавов АМг5 и АМг6 — удовлетворительная. Сплавы, упрочняемые термической обработкой Высокие прочностные характеристики сварного соединения из этих сплавов, близкие к свойствам основного металла, могут быть получены только после полной термической обработки сварного узла. Осуществить термообработку изделия не всегда возможно. По этой причине временное сопротивление сварного соединения достигает лишь значения 0,6—0,7 от временного сопротивления основного металла. Это объясняется тем, что в области термического влияния происходит разупрочнение материала, который претерпевает ряд структурных изменений, отвечающих различным температурам и времени нагрева. Временное сопротивление стыкового сварного соединения с усилением из алюминиевых деформируемых сплавов, упрочняемых термической обработкой, зависит от способа сварки, толщины свариваемого материала, состояния материала до и после сварки, а также от дефектов, допустимых без исправления. Ниже приведены значения коэффициента разупрочнения сваркой основного металла бв/бв (бв — временное сопротивление основного металла в исходном состоянии) в зависимости от толщины материала при ручной и автоматической дуговой сварке неплавящимся электродом: http://metallicheckiy-portal.ru/imgart/st086/st086-0062-1.jpg Сплавы системы Al—Си—Мп. Представителем свариваемых сплавов А1—Си— Мп являются сплавы Д20 и 1201. Основное достоинство сплавов этой системы — высокая длительная прочность сварных соединений в интервале 250—300 °С и хорошая работоспособность при низких температурах. Значительное упрочнение металла шва достигается после искусственного старения. Естественное старение сварных соединений практически не происходит. Временное сопротивление бв стыкового сварного соединения, выполненного автоматической аргонно-дуговой сваркой неплавящимся электродом, составляет для Д20 300 МПа, для 1201 320 МПа. Состояние материала: закалка + искусственное старение + сварка. Сплавы Д20 и 1201 обладают удовлетворительной свариваемостью. Коэффициент трещинообразования (крестовая проба) данных сплавов в закаленном и искусственно состаренном состоянии составляет для Д20 —15 % и для 1201 —8 % при сварке проволокой основного состава. Коррозионная стойкость сварных соединений пониженная. Удовлетворительная защита сварного соединения достигается анодированием после сварки с последующим лакокрасочным покрытием. Сплавы системы Al—Mg—Si. Основное упрочнение сварных соединений из сплавов этой системы достигается в результате закалки и последующего искусственного старения. Предел прочности бв стыкового сварного соединения с усилением (при полной термообработке материала перед сваркой) составляет, МПа: для сплава АД31 210, АДЗЗ 240 и АВ 260, Свариваемость сплавов АД31 и АДЗЗ удовлетворительная. Хорошая свариваемость при аргонно-дуговой сварке у сплава АВ. Коэффициент трещинообразования при сварке крестовой пробы сплавов АДЗЗ и АВ составляет ~10 %, сплава АД31 —15%. При сварке указанных сплавов рекомендуется проволока марки св. АК5. Коррозионная стойкость сварных соединений высокая. Сплавы системы Al—Cu—Mg. Основной недостаток сплавов этой системы (Д1, Д16, Д19 и др.) — неудовлетворительная свариваемость при аргоно-дуговой сварке, а именно: повышенная склонность сплавов к образованию кристаллизационных трещин. В настоящее время проходят промышленное опробование новые высокопрочные свариваемые алюминиевые сплавы ВАД1 и М40. Эти сплавы по сравнению с другими сплавами данной системы обладают удовлетворительной свариваемостью. Временное сопротивление стыкового сварного соединения сплавов ВАД1 и М40 (искусственное старение перед сваркой) составляет бв= 320-5-330 МПа. Значительная сопротивляемость образованию горячих трещин наблюдается при сварке сплавов ВАД1 и М40 присадочной проволокой того же химического состава, что и основной металл. Коэффициент трещинообразования при сварке этого сплава в состаренном состоянии не более 12%. Сплавы системы Al—Zn—Mg. Некоторые сплавы этой группы, несмотря на высокую прочность после термообработки, до последнего времени не находили применения в промышленности. Это объясняется тем, что высоколегированные свариваемые сплавы оказались склонными к коррозии под напряжением, а низколегированные не имели существенных преимуществ по прочности по сравнению с высоколегированными сплавами типа магналия. Проведенные многочисленные исследования показали возможность разработки некоторых свариваемых сплавов данной системы с хорошей коррозионной стойкостью (1915, В92ц и др.). Свариваемые алюминиевые сплавы приобретают высокие механические свойства после искусственного или длительного естественного старения (бв = 380—420 МПа). При естественном старении основной прирост механических свойств сплавов (бв = 400 МПа) и их сварных соединений (бв = 360 МПа) достигается по истечении трех месяцев. Сплавы В92ци 1915удовлетворительно свариваются при аргонно-дуговой сварке с присадкой проволоки марок св. В92 и 1557, соответственно. Коэффициент трещинообразования по крестовой пробе составляет 10—15%. Коррозионная стойкость сварных соединений сплавов 1915 и В92 в агрессивных средах пониженная. Удовлетворительная защита сварного соединения достигается http://metallicheckiy-portal.ru/articles/cvetmet/prim_aluminievix_splavov_v_tovarax/16 http://remkvartur.ru/wp-content/uploads/2012/11/01356887.jpg Контроль качества сварных соединений алюминия Качество сварных соединений определяет срок службы и надежность работы конструкций различного назначения из алюминия и его сплавов, применяемых в машиностроении, таких как емкости, резервуары, технологические трубопроводы и др. Для оценки качества сварных соединений конструкций из алюминия и его сплавов в основном применяют следующие методы контроля: внешний осмотр и измерения, гамма- или рентгенографирование, ультразвуковую дефектоскопию, испытание гидравлическим давлением или гелиевым течеискателем. Помимо этого, проводят испытания механических свойств соединений, металлографические исследования, контроль термической обработки, если она предусмотрена технологическим процессом. Контроль осуществляют работники ОТК завода-изготовителя или другой изготовляющей организации во многих случаях с участием представителя заказчика. Объем и методы контроля устанавливаются техническими условиями на изделие или специальными «Правилами контроля», распространяемыми на группу изделий или типов конструкций. Контроль качества сварных соединений алюминия и его сплавов имеет свои особенности в связи с повышенной склонностью швов к образованию пористости, а также к возникновению несплавлений; между швами и кромками и между валиками. Несплавления, как правило, не выявляются рентгено- и гаммаграфированием, поэтому следует применять метод ультразвуковой дефектоскопии. При сварке неплавящимся электродом со сквозным проплавлением и формированием корня шва на неостающейся подкладке частым дефектом, не обнаруживаемым рентгено- или гаммапросвечиванием, является несплавление в корне шва. При отсутствии доступа для подварки такие швы следует сваривать с защитой корня шва нейтральным газом. Кромки перед сваркой необходимо подвергать шабровке для удаления окисной пленки. При многослойной сварке поверхностная пористость нижележащих валиков может переплавляться при наложении последующих валиков! Поэтому при промежуточном контроле просвечиванием ее можно не учитывать. Контролю внешним осмотром обычно подвергают 100% выполненных швов. Внешние дефекты, такие, как трещины, наплывы, прожоги, незаваренные кратеры, свищи в начале Шва (зажигание дуги на основном металле), выводы кратера на орновной металл, сплошные сетки или цепочки пор, непровары, подрезы — не допускаются. Для рентгеновского контроля применяют отечественные установки РУП-120-5, РУП-200-5, РУП-400 и аппараты зарубежных фирм, например, типа BGL-140 и BGL-200 бельгийской фирмы «Baltospot», типа «Liliput-120» и «Liliput-200» венгерской фирмы «Medicor» и др. В монтажных условиях применяют гаммадефектоскопы типа ГУП, РИД с источниками кобальта-60, цезия-137, иридия-194 и др. В связи с повышенной пористостью сварных швов возникают определенные трудности в установлении норм на количество и размеры допустимых дефектов Их устанавливают в большинстве случаев, исходя из технологических возможностей существующих методов сварки на основании статистических данных. Нередко при оценке качества швов по результатам просвечивания применяют эталонные снимки. Для примера ниже приведены нормы на допустимые дефекты при рентгеновском контроле сварных швов, выполненных неплавящимся электродом на трубах со стенками толщиной 3,5 и 3,9 мм. Не допускаются и подлежат исправлению следующие дефекты, выявленные с помощью рентгеновских снимков: 1) трещины, непровары, кратеры, свищи; 2) цепочки пор и вольфрамовых включений размером более 0,5 мм; 3) скопления Мелких дефектов — пор, включений размером более 0,5 мм, в общей сумме превышающих по площади 15 мм2, распространенных на любые 100 мм длины шва; 4) одиночные поры и вольфрамовые включения размером более 0,5 мм в количестве более трех, расположенные на участке шва длиной 100 мм. Контроль рентгено- или гаммаграфированием сварных соединений толщиной 40 мм и более производят через 20—30 мм заполнения разделки. Это целесообразно для проверки устранения обнаруженных ранее дефектов. Глубину залегания недопустимых дефектов по результатам просвечивания определяют методом ультразвукового контроля, позволяющего более точно зафиксировать место положения дефекта по толщине шва. Наличие скоплений и цепочек пор на рентгеновских снимках после окончательного просвечивания определяют по результатам послойного ультразвукового контроля. Для сварных швов этих толщин, выполненных плавящимся электродом в среде защитных газов, недопустимы следующие дефекты: 1) трещины, несплавления, незаплавленные кратеры, цепочки и скопления пор, наплывы; 2) поры и включения диаметром более 3 мм, поры и включения диаметром менее 3 мм при суммарной площади их изображения на снимке, составляющей более 2% по отношению к площади шва на любые 100 мм снимка. Поры и включения, расположенные на глубине менее 5 мм, исправлению не подлежат, так как они переплавляются при наложении последующих валиков. Браком считают детали, в которых при ультразвуковом контроле обнаружены следующие дефекты: 1) с эквивалентной площадью более 4 мм2 при контроле слоя толщиной 40 мм и более 7 мм2 при контроле слоя толщиной 200 м; 2) с условной протяженностью более 10 мм при глубине залегания дефектов до 40 мм и более 15 мм при глубине 40— 150 мм. Допускаются дефекты с эквивалентной площадью менее 4 мм при суммарной площади менее 2% площади на любых 100 мм длины, не носящие протяженного характера. Контроль ультразвуком производится с применением существующего для этих целей оборудования — УЗД-ЗМ, ДУГ-11ИМ и ДУГ-13ИМ и др. Помимо рассмотренных, в зависимости от требований к конструкции и условий эксплуатации применяют и другие методы контроля: а) проверка квалификации сварщиков, операторов, работников дефектоскопии и инженерно-технического состава, принимающего участие в изготовлении конструкций и контроле сварных соединений; б) контроль качества сборки под сварку; в) контроль в процессе сварки; г) контроль качества свариваемых и сварочных материалов и материалов для дефектоскопии. Особое внимание должно уделяться контролю качества травления присадочной проволоки и подготовки кромок под сварку (зачистка, травление). В процессе сварочных и контрольных работ необходимо вести «Журнал сварочных работ», в который вносить все данные о сварке и результатах контроля сварных соединений . http://svarder.ru/kontrol_kachestva_svarnyix_soedinenij_alyuminiya.html ГОСТ 7871-75 Проволока сварочная из алюминия и алюминиевых сплавов. Технические условия (с Изменениями N 1, 2)http://docs.cntd.ru/document/1200004669 Внедрение сварных алюминиевых конструкций Дальнейшее внедрение сварных алюминиевых конструкций в различные отрасли машиностроения во многом зависит от раз­работки новых способов сварки алюминиевых сплавов. Раньше алюминиевые сплавы сваривали в основном в нижнем положении из-за высокой жидкотекучести расплавленного алюминия. В последнее время разработаны новые способы сварки, поз­воляющие сваривать алюминий во всех пространственных положе­ниях. Так в ИЭС им. Е. О. Патона разработан способ импульсной сварки плавящимся электродом. В научно-исследовательском и конструкторском институте мон­тажной технологии (НИКИМТе) разработан метод сварки труб с применением формирующего давления в их внутренней поло­сти. За рубежом разработан способ механизированной сварки алюминиевых листов большой толщины в вертикальном положе­нии, обеспечивающий получение высококачественных стыковых и угловых швов. Разработка новых способов сварки, как правило, сопровождается созданием соответствующего сварочного оборудо­вания, позволяющего получить новый качественный эффект при изготовлении сварных конструкций. Учитывая, что проблема очень широка, авторы не ставили себе задачу охватить все вопросы, связанные со сваркой кон­струкций из алюминиевых сплавов, и остановились на вопросах газоэлектрической сварки алюминиевых сплавов. Более детально осветили вопросы сварки трубных узлов и крупногабаритных деталей ответственных конструкций. Сплавы алюминия в зависимости от назначения делят на дефор­мируемые и литейные. Деформируемые алюминиевые сплавы разделяют на две группы: неупрочняемые и упрочняемые терми­ческой обработкой. К неупрочняемым термической обработкой относятся сплавы типа магналия (AMrl, АМг2 АМгЗ, АМг5 и АМгб), сплавы АМц, АМцС, а также алюминий АДОО, АДО, АД1 и АД. К упрочняемым термической обработкой относятся сплавы АД31, АДЗЗ, АВ, Д1, Д16, Д18, АК4, АК4-1, АК6, АК8, Д20, В93, В94, В95 и др. Из деформируемых сплавов изготовляют различные полуфа­брикаты в виде листов (толщиной до 10 мм), плит (толщиной свыше 10 мм), прессованных профилей, поковок, штампованных загото­вок, прутков, проволоки, фольги, труб. Термически упрочняемые алюминиевые сплавы обладают более высокими прочностными свойствами, чем термически неупрочняе­мые. Однако прочность последних можно повысить путем нагартовки. Разупрочнение алюминия при сварке В сварных соединениях термически неупрочняемых сплавов системы А1—Mgнаименьшую прочность имеет металл шва, она составляет обычно 0,85—0,95 прочности основного металла. Во многих случаях этого достаточно, чтобы не предпринимать до­полнительных мер с целью повысить прочность металла шва. Если листы перед сваркой нагартованы, то разупрочнение происходит также и в околошовной зоне. Равнопрочность всех зон сварного соединения и основного металла можно достигнуть прокаткой ро­ликами металла шва и околошовной зоны, а также путем увеличе­ния содержания магния в присадочной проволоке. Значительно больше проблем возникает в случае необходимо­сти получения сварных соединений, однородных по химическим свойствам с основным металлом термически упрочняемых сплавов. Металл зоны сплавления и околошовной зоны при сварке терми­чески упрочненных алюминиевых сплавов подвергается термиче­ской обработке различных видов: закалке, отжигу, возврату. На рис. 1 приведена зависимость механических свойств сплава типа авиаль (системы А1—Mg—Si) от температуры и продолжи­тельности выдержки. В зависимости от температуры и продолжи­тельности ее воздействия степень разупрочнения различна. В не­которых случаях прочность сварных соединений сплавов, типа авиаль, дуралюмин может составлять лишь 50% прочности основ­ного металла. Рис. 1. Влияние различных термических циклов на механические свойства сплава САВ-1: а, б — термические циклы; в — изменение механических свойств На рис. 2 показаны изменения твердости в сварном соединении труб сплава типа авиаль в поперечном направлении. В зоне свар­ного шва, где температуры достаточно высоки, обычно происходит последующее естественное старение металла с повышением проч­ностных характеристик. В зоне отжига обычно не удается достиг­нуть повышения прочности до уровня основного металла без повторной закалки всего соединения. Однако закалка всего свар­ного соединения (конструкции) возможна далеко не всегда, так как такую операцию трудно выполнить на крупногабаритной конструкции, а также на любой конструкции, имеющей жестко заданные размеры и не имеющей припуска на механическую обра­ботку. Рис. 2. Изменение твердости в сварном соединении труб из сплава типа авиаль (1-18 — номера точек измерения) Следует отметить, что в тех многочисленных случаях (напри­мер, при сварке конструкций из сплавов авиаль, дуралюмин), когда для снижения склонности сварных швов к трещинообразонию приходится применять сварочную проволоку, отличающуюся по химическому составу от основного металла (например, значительно увеличивая в сварочной проволоке по сравнению с основ­ным металлом процент содержания кремния), получить металл шва, равнопрочный основному металлу, невозможно. Ожидаемое снижение прочности сварных соединений следует учитывать при назначении допустимых нагрузок на конструкцию. В последнее время получили распространение самозакаливаю­щиеся алюминиевые сплавы. Эти сплавы стареют очень медленно и достигают нормальной прочности примерно через три месяца. Самозакаливающиеся сплавы относятся к системе А1—Zn—Mg. Для повышения предела текучести сплавы подвергают искусствен­ному старению при 100° С в течение 90—100 ч. Сплавы такого типа, например, содержащие 4,5% Zn, 1,5% Mg, до 3% Мп и 0,2% Cr, в состоянии после искусственного старения имеют предел текуче­сти 28—33 кГ/мм2, предел прочности при растяжении 36— 41 кГ/мм2. После сварки и искусственного старения при 100— 110° С в течение четырех суток предел прочности достиг 34— 39 кГ/мм2, при этом угол изгиба составил 130—160°. Однако при хороших прочностных показателях сплав обладает склонностью к образованию трещин в шве и зоне сплавления. Положительное влияние на уменьшение склонности к обра­зованию трещин оказывает применение присадки типа СвАК5. Из самозакаливающихся сплавов наибольшей стойкостью против образования кристаллизационных трещин обладают сплавы си­стемы Аl—Zn—Mgс повышенным содержанием магния (6,5%) и небольшими добавками меди. Повышения прочности сварных соединений сплава В95 дости­гают термической обработкой, однако не удается получить проч­ность сварных соединений выше 80% прочности основного металла при низком уровне пластичности. Возникновение трещин Склонность к трещинообразованию Существенным затруднением при сварке алюминиевых сплавов является склонность их к образованию трещин. Некоторые сплавы склонны к образованию горячих трещин, возникающих в период кристаллизации металла сварочной ванны, в других образуются холодные трещины, обнаруживаемые иногда спустя несколько месяцев после сварки. Трещины всех типов чрезвы­чайно опасны для конструкций, так как могут привести к внезап­ному и полному их разрушению. Горячие трещины выявлять несколько проще, так как все сварные швы при изготовлении конструкций подвергают различ­ным методам контроля. Холодные трещины особенно опасны тем, что возникают в конструкциях, эксплуатируемых или находя­щихся на хранении как бездефектные. Разрушения от холодных трещин наступают неожиданно. В некоторых случаях растрески­вание протекает в коррозионной среде. Поэтому все алюминиевые сплавы, прежде чем использовать для изготовления конструкций, необходимо тщательно исследовать на склонность к образованию горячих и холодных трещин. Склонность алюминиевых сплавов к образованию трещин уве­личивается с увеличением количества в них легирующих элемен­тов, с повышением их прочности. Это относится к таким сплавам, как В95, В96, М40, 01915, 01911, 01063, ВАД23 и др. Трещины при сварке возникают при достижении предельной деформации в металле шва или в зоне взаимной кристаллизации. В результате неравномерного распределения температур при сварке также в отдельных зонах металла возникают растягиваю­щие напряжения. При остывании шва растягивающие напряжения возникают в зоне, где при нагреве была максимальная температура. В высоколегированных сплавах по границам зерен образуются эвтектики, которые в момент кристаллизации зерен остаются жидкими, имеют низкую прочность и при приложении растягиваю­щих напряжений легко разрушаются. Возникновение трещин Возможность возникновения трещин помимо химического со­става сплава определяется также другими факторами, задающими величину и темп развития деформации в определенные промежутки времени. Величина и темп развития деформации металла на различных этапах нагрева и охлаждения зависят от режима сварки, условий охлаждения и жесткости закрепления. Холодные трещины в алюминиевых сплавах могут быть не только металлургического происхождения, но и возникать от не­правильного применения некоторых технологических операций. Например, проковка сварных швов может приводить к образова­нию трещин, иногда не выходящих на поверхность металла. Выяв­ление таких дефектов затруднительно, поэтому в случае необхо­димости проведения подобных операций требуется тщательное предварительное исследование. Чистый алюминий марок AB0000, АВ000, АВОО не склонен к образованию горячих трещин. Стойкость к образованию трещин снижается при увеличении содержания кремния, а также может снижаться или повышаться в зависимости от содержания железа. Алюминий других марок проявляет склонность к образованию трещин особенно при сварке листов и плит большой толщины. Подавление склонности к образованию горячих трещин в сплавах, содержащих до 0,35% Si, достигается таким содержа­нием железа, что выдерживается отношение Fe: Si>= 0,5. При более высоком содержании кремния соединение без трещин может быть получено при соотношении указанных элементов больше единицы. Сплавы системы А1—Мп применяют только с содержанием 1,2—1,6% Мп (сплав АМц). Этот сплав относится к числу хорошо сваривающихся. Тонкие листы (до 3 мм) свариваются без трещин. При сварке листов большей толщины склонность к образованию горячих трещин зависит также от содержания железа и кремния. У сплавов типа АМц, содержащих более 0,2% Fe, при соотноше­нии Fe: Si> 1 склонность к образованию трещин близка к нулю. При содержании более 0,2% Siдолжно сохраняться соотношение Fe: Si> 1. Сплавы системы А1—Mgобладают меньшей склонностью к об­разованию горячих трещин, чем сплавы систем А1—Си и А1—Si. Наибольшая склонность к образованию трещин наблюдается при сварке тавровых проб сплава, содержащего 1—2% и 2,5 — 3,9% Mgпри испытаниях на образцах крестовой пробы [17, 121]. Для предотвращения образования трещин необходимо применять при­садочный материал с большим содержанием магния. К термически упрочняемым сплавам системы А1—Mg—Siотносятся применяемые в СССР сплавы АВ, АК6-1 и АКВ. Упроч­нение этих сплавов достигается за счет выделения фазы Mg2Siпри старении. Особенностями свариваемости таких сплавов яв­ляются повышенная склонность к образованию горячих трещин в процессе сварки и разупрочнение в околошовной зоне. Наиболь­шую склонность к образованию горячих трещин проявляют сплавы, содержащие 0,2—2% Siи 0,2—1,5% Mg. Склонность к образованию горячих трещин определяется наличием легкоплавкой трой­ной эвтектики А1—Mg—Mg2Si, а также двойных эвтектик А1—Mg2Siи А1—Si, расширяющих интервал твердожидкого состояния сплава. Использование присадочных материалов В сварных соединениях сплавов типа авиаль значительное уменьшение склонности к образованию горячих трещин может быть достигнуто при использовании присадочных материалов с со­держанием 4,5—6,0% Si. При этом склонность к образованию трещин, определяемая по крестовой пробе, уменьшается с 60% до 0. Таким присадочным материалом может быть проволока СвАК5. Применение присадочных проволок, содержащих не­сколько процентов магния, например, АМг6, также исключает образование трещин в шве, но одновременно с этим интенсивно развиваются околошовные трещины. Это связано с более широким интервалом твердо-жидкого состояния и большей линейной усад­кой металла шва, выполненного таким присадочным материалом. При сварке сплава такого типа с применением присадочной про­волоки, содержащей 5% Si, получаются швы, пониженные меха­нические свойства которых не могут быть повышены термической обработкой. При сварке деталей из сплава типа АВ хорошие результаты получены при использовании присадочного материала, содержа­щего 0,9% Mg, 2,3—3,5% Si, а также 0,25% Ті, 0,4% Мп или 0,2% Сг. Испытаниями на крестовой пробе трещины не обнару­жены. Швы, выполненные с помощью этой присадки, имеют один цвет с основным металлом после анодирования в отличие от швов, выполненных с присадкой СвАК5. Сплавы АК6 и АК8, со­держащие 2,2 и 4,3% Cu, склонны к образованию горячих трещин при сварке крестовой пробы. Эта склонность уменьшается при вве­дении в них 0,08—0,15% Ті. К сплавам системы А1—Си относятся литейные АЛ7, АЛ 12 и деформируемый Д20. Сваривающийся сплав Д20 содержит 0,4— 0,8% Мп и 0,1—0,2% Ті. Последний значительно измель­чает зерно металла шва. Для повышения стойкости против трещин в сплаве должно быть не более 0,3% Fe, 0,2% Siи 0,05% Mg. Дуралюмины относятся к системам Аl—Cu—Mg—Mn и Аl— Cu—Mg—Mn—Si. Основные марки дуралюмина Д1, Д6, Д16, 3125, АК8, ВД17. При сварке эти сплавы обладают повышенной склонностью к образованию трещин, а их сварные соединения имеют пониженные значения механических свойств в зоне сплавле­ния со швом. Применением присадочных проволок типа СвАК5 и В61 можно снизить вероятность образования трещин при любом способе сварки. Существенное значение при этом имеет правильный подбор режимов сварки. Низкая пластичность шва и зоны сплавления обусловлена тем, что по границам оплавленных зерен распола­гаются хрупкие прослойки интерметаллидов. Одним из наиболее распространенных сплавов системы Аl— Zn—Mg—Cu является сплав В95. Для повышения коррозионной стойкости листы из спла­вов В95 плакированы сплавом, содержащим 3,5% MgZn2. Сплав В95 склонен к образованию горячих и холодных тре­щин. Последние наблюдаются только при газовой сварке. Для сварки сплава В95 применяют присадочный материал химического состава: 6% Mg, 3% Zn, 1,5% Cu, 0,2% Mn, 0,2% Ті, 0,25% Cr или 5% Mg, 0,2—1,5% Cu, 10% Zn, 0,2% Mn, 0,2% Ті, 0,25% Cr, остальное Аl. Можно также использовать сплавы, содержащие 3% Mg, 6% Zn, 0,5—1% Ті или 8—10% Mg, остальное Аl. Исправление дефектов Газоэлектрическая сварка металлов является сложным технологическим процессом, в ходе которого возможно появление дефектов, не допустимых по условиям работы сварных конструкций. Необходимость исправлений дефектов определяют по результатам дефектоскопического контроля согласно техническим условиям на приемку сварных соединений. Удаление дефектного участка шва следует производить в зависимости от размера сварного соединения пневматическим зубилом, шарошкой, шабером, но ни в коем случае не абразивным инструментом, так как абразив остается в металле шва и качество поверхности выборки получается неудовлетворительным. Форма разделки дефектного места должна иметь плавный переход к окружающим участкам сварного соединения. Перед подваркой проводят дополнительный контроль дефектного места, чтобы подтвердить устранение дефекта. Подварку выполняют ручной или полуавтоматической сваркой с соблюдением всех требовачий подготовки деталей и материалов к сварке. После подварки производят окончательный контроль согласно техническим условиям на приемку сварных соединений. При сварке деталей из термически упрочняемых алюминиевых сплавов следует иметь в виду, что каждая подварка при исправлении дефектного участка шва приводит к снижению прочности сварного соединения из-за дополнительного разупрочнения металла в зоне термического влияния при повторных нагревах. Поэтому при сварке термически упрочняемых сплавов необходимо в каждом отдельном случае рассматривать вопрос о допустимости более чем однократной подварки или допустимости подварки вообще. Контроль качества сварных соединений алюминия Качество сварных соединений определяет срок службы и надежность работы конструкций различного назначения из алюминия и его сплавов, применяемых в машиностроении, таких как емкости, резервуары, технологические трубопроводы и др. Для оценки качества сварных соединений конструкций из алюминия и его сплавов в основном применяют следующие методы контроля: внешний осмотр и измерения, гамма- или рентгенографирование, ультразвуковую дефектоскопию, испытание гидравлическим давлением или гелиевым течеискателем. Помимо этого, проводят испытания механических свойств соединений, металлографические исследования, контроль термической обработки, если она предусмотрена технологическим процессом. Контроль осуществляют работники ОТК завода-изготовителя или другой изготовляющей организации во многих случаях с участием представителя заказчика. Объем и методы контроля устанавливаются техническими условиями на изделие или специальными «Правилами контроля», распространяемыми на группу изделий или типов конструкций. Контроль качества сварных соединений алюминия и его сплавов имеет свои особенности в связи с повышенной склонностью швов к образованию пористости, а также к возникновению несплавлений; между швами и кромками и между валиками. Несплавления, как правило, не выявляются рентгено- и гаммаграфированием, поэтому следует применять метод ультразвуковой дефектоскопии. При сварке неплавящимся электродом со сквозным проплавлением и формированием корня шва на неостающейся подкладке частым дефектом, не обнаруживаемым рентгено- или гаммапросвечиванием, является несплавление в корне шва. При отсутствии доступа для подварки такие швы следует сваривать с защитой корня шва нейтральным газом. Кромки перед сваркой необходимо подвергать шабровке для удаления окисной пленки. При многослойной сварке поверхностная пористость нижележащих валиков может переплавляться при наложении последующих валиков! Поэтому при промежуточном контроле просвечиванием ее можно не учитывать. Контролю внешним осмотром обычно подвергают 100% выполненных швов. Внешние дефекты, такие, как трещины, наплывы, прожоги, незаваренные кратеры, свищи в начале Шва (зажигание дуги на основном металле), выводы кратера на орновной металл, сплошные сетки или цепочки пор, непровары, подрезы — не допускаются. Для рентгеновского контроля применяют отечественные установки РУП-120-5, РУП-200-5, РУП-400 и аппараты зарубежных фирм, например, типа BGL-140 и BGL-200 бельгийской фирмы «Baltospot», типа «Liliput-120» и «Liliput-200» венгерской фирмы «Medicor» и др. В монтажных условиях применяют гаммадефектоскопы типа ГУП, РИД с источниками кобальта-60, цезия-137, иридия-194 и др. В связи с повышенной пористостью сварных швов возникают определенные трудности в установлении норм на количество и размеры допустимых дефектов Их устанавливают в большинстве случаев, исходя из технологических возможностей существующих методов сварки на основании статистических данных. Нередко при оценке качества швов по результатам просвечивания применяют эталонные снимки. Для примера ниже приведены нормы на допустимые дефекты при рентгеновском контроле сварных швов, выполненных неплавящимся электродом на трубах со стенками толщиной 3,5 и 3,9 мм. Не допускаются и подлежат исправлению следующие дефекты, выявленные с помощью рентгеновских снимков: 1) трещины, непровары, кратеры, свищи; 2) цепочки пор и вольфрамовых включений размером более 0,5 мм; 3) скопления Мелких дефектов — пор, включений размером более 0,5 мм, в общей сумме превышающих по площади 15 мм2, распространенных на любые 100 мм длины шва; 4) одиночные поры и вольфрамовые включения размером более 0,5 мм в количестве более трех, расположенные на участке шва длиной 100 мм. Контроль рентгено- или гаммаграфированием сварных соединений толщиной 40 мм и более производят через 20—30 мм заполнения разделки. Это целесообразно для проверки устранения обнаруженных ранее дефектов. Глубину залегания недопустимых дефектов по результатам просвечивания определяют методом ультразвукового контроля, позволяющего более точно зафиксировать место положения дефекта по толщине шва. Наличие скоплений и цепочек пор на рентгеновских снимках после окончательного просвечивания определяют по результатам послойного ультразвукового контроля. Для сварных швов этих толщин, выполненных плавящимся электродом в среде защитных газов, недопустимы следующие дефекты: 1) трещины, несплавления, незаплавленные кратеры, цепочки и скопления пор, наплывы; 2) поры и включения диаметром более 3 мм, поры и включения диаметром менее 3 мм при суммарной площади их изображения на снимке, составляющей более 2% по отношению к площади шва на любые 100 мм снимка. Поры и включения, расположенные на глубине менее 5 мм, исправлению не подлежат, так как они переплавляются при наложении последующих валиков. Браком считают детали, в которых при ультразвуковом контроле обнаружены следующие дефекты: 1) с эквивалентной площадью более 4 мм2 при контроле слоя толщиной 40 мм и более 7 мм2 при контроле слоя толщиной 200 м; 2) с условной протяженностью более 10 мм при глубине залегания дефектов до 40 мм и более 15 мм при глубине 40— 150 мм. Допускаются дефекты с эквивалентной площадью менее 4 мм при суммарной площади менее 2% площади на любых 100 мм длины, не носящие протяженного характера. Контроль ультразвуком производится с применением существующего для этих целей оборудования — УЗД-ЗМ, ДУГ-11ИМ и ДУГ-13ИМ и др. Помимо рассмотренных, в зависимости от требований к конструкции и условий эксплуатации применяют и другие методы контроля: а) проверка квалификации сварщиков, операторов, работников дефектоскопии и инженерно-технического состава, принимающего участие в изготовлении конструкций и контроле сварных соединений; б) контроль качества сборки под сварку; в) контроль в процессе сварки; г) контроль качества свариваемых и сварочных материалов и материалов для дефектоскопии. Особое внимание должно уделяться контролю качества травления присадочной проволоки и подготовки кромок под сварку (зачистка, травление). В процессе сварочных и контрольных работ необходимо вести «Журнал сварочных работ», в который вносить все данные о сварке и результатах контроля сварных соединений различными методами. Материал с сайта: http://ruswelding.com
    1 балл
  26. Пробовал на прошлой работе, в большинстве случаев помогает, иногда нет (видимо герметик "несмываемый" бывает). Если выбрать механическое удаление, получишь полчаса сосредоточенной возни и предсказуемый результат (для эпизодической работы это приемлемо). В этот раз было очень лень ехать за смывкой, у меня это второй случай за год (узлы и агрегаты у меня не основное направление деятельности). Что удивительно, в последнее время там мало "странностей и сюрпризов", например у Isuzu начиная примерно с 2006-2007 все довольно тривиально и предсказуемо, без инженерных изысков, просто для работы. Этот двигатель меня немного удивил именно потому, что выбивается из общей тенденции.
    1 балл
  27. Сварки у меня в последнее время мало, да к тому же вся она банальная и непримечательная, а вот в моториста опять пришлось поиграть. Привезли на днях небольшой компрессор Danyo 180, винтовой дизельный японец со скромным пробегом в почти 3600 часов. Двигатель Isuzu 4LE-2, довольно интересно скомпонованный, кстати. Не заводится, хочет но не может, а раньше все хорошо было. Попробовали, действительно, вспышки есть, но запуска нет, жизнь покидает его сразу после выключения стартера. Мой нос сразу вынес диагноз, но озвучивать я его не стал, нос это не прибор, ему верить нельзя. Пришлось углубиться в проблему... Для облегчения доступа в моторный отсек пришлось снять с компрессора крышу, иначе там совсем не развернуться: Предварительное обследование довело до компрессометра, а как известно компрессометр до добра не доводит (но он в этом не виноват). Результаты замеров оказались удручающие-обнадеживающие, да так бывает. В первых двух цилиндрах по 10 кгс/см^2, а в других двух по 27, почти нормально (для холодного двигателя). Поддув первого цилиндра в верхней мертвой точке подтвердил пробой прокладки - перетекает во второй. Пробитую прокладку не фотографировал, но есть голова до шлифовки (слегка побило раковинами по газовому стыку), и после: Новая прокладка (пришлось подождать несколько дней пока прилетела), приземляем голову, тянем динамометрическим ключом, доворачиваем болты на четверть оборота. Все привычно, по букварю (на данный двигатель): Самое мое нелюбимое в данной операции, это очистка канавки под герметик на проставке под клапанную крышку. У самой крышки резиновая прокладка, а у проставки снизу (по плоскости прилегания к головке) уплотнение герметиком. Старый нужно каждый раз вычищать из канавки, очень муторно. На фотографии канавка уже расчищена полностью. Кстати, в клапанную крышку можно встроить впускной коллектор (можно видеть на второй фотографии). Просто пара веселых особенностей данного двигателя, которая несомненно может обрадовать топливщиков. На первой фотографии видно, что ТНВД, как отдельный агрегат, отсутствует, секции прямо в блоке и приводятся от распредвала, РЧВД тоже на блоке (то есть снять ТНВД и отнести на стенд не получится). На второй фотографии простые пятигранные болты секции (хорошо что я не топливщик). А это клапанные зазоры, немного великоваты... У одного аж 2мм, видимо никто не регулировал за весь срок эксплуатации. Это не шутка и не постановка для фотографии, так тоже бывает. Разумеется у двигателя даже перекрытия клапанов на продувку не было. Ну да ладно, при замене прокладки регулировка все равно обязательна, вал то нижний. Ну и восстановил проходимость слива конденсата с фильтра-осушителя. Он немного забился. В целом получилось предсказуемо и привычно, в два захода: принял, продиагностировал и разобрал, потом подождал прокладку собрал и сдал клиенту. Опять получился длиннопост-комикс...
    1 балл
  28. Очень простая пайка. Латку поставить...10мин. работы. А вот с этим радиатором конд. спорткара Нисан 1998 г. пришлось долго проработать. С Японии машина пришла с нерабочим кондиционером. Радиатор довольно редкий. На Ебей американцы предлагают его за 200 000руб.,разумеется, столько он не стоит. Дело в том, что течь в радиаторе только в местах его крепления. Это так называемая фреттинг -коррозия. Пайке эти места поддаются сложно. Один угол пришлось заменить. Опрессовываешь его азотом на 30ати с выдержкой несколько часов и открываются новые точки... и так много раз. Последний раз выдержал его 18 часов под давлением 30ати....будет работать. Кстати, в емкость с водой можно добавить течеискатель Кастолин. Если поместить радиатор в воду на какое-то время, и если есть даже микротечь, то на поверхности воды образуется ореол из пузырьков... Припой Кастолин 192
    1 балл
  29. Радиатор от комбайна, очистка от клея, пайка. С другой стороны то же пришлось паять. Заварил пластину обратно. Пайка Castolin 192 fbk и по стороне которая с клеем 190 флюс и er 4047.
    1 балл
  30. Радиатор испарителя Шевроле.Лет пять назад уже паял этот радиатор, но там была незначительная течь вверху бачка. В этот раз течь внутри в том же месте, но в середине стыка. Конфигурация трубок не позволяет увидеть место пайки. Пришлось вырезать соту ,чтобы улучшить доступ, но ..сразу не удалось перекрыть, а дальше смысла нет. Удалить соту на три четверти, чтобы улучшить обзор? .все равно неудобно. Вскрыть бачок сверху, но стружка попадет во внутрь. В принципе можно,но надо тщательно промыть и продуть. Дело в том, что таких радиаторов в наличии уже нет, а если заказывать, то конец августа. Нашли новый подходящий радиатор Хундай 250/250/60. Трубки переварил и это какое-то решение проблемы. Трубки перепилить ножовкой. Стружку удалить ватными палочками. Опрессовка 14ати.
    1 балл
  31. Добрый вечер, вот что получилось: , т к в стальном протезе трубы сечением превосходят соты, поток пойдет через протез, о чем я сказал механикам, вспомнил что на складе есть электроды для РДС для сварки алюминия, взял вечером 5 шт, и рассудив, что обмазка на электродах выполняет роль флюса, решил с помощью газосварки заварить соты, что только что закончил. Соты толстые, теплоотвод очень большой, с трудом но сварил, весь аж употел. Тиг нет, ничего нет, извращения все от отсутствия оборудования.
    1 балл
  32. Добрый вечер Вадим, я и так все время в таких случаях говорю им про то, что в Ухте есть ты, и у тебя есть опыт в таких делах, и самое главное, нужное оборудование. Но т к у нас все решается теперь в Красноярске, без их одобрения никто ничего не повезет никуда. Установка теперь такая, своими силами, как нибудь, денег нет. Даже упаковка Кастолина теперь роскошь, хотя треть прутка решила бы проблему этого радиатора. Там по факту пробито 2 соты. Я тут тоже последнею вахту доработаю, и пойду в свободное плавание, надоело это все, их как нибудь, и весь этот дурдом
    1 балл
  33. Я то это осознаю, а вот механики наверное нет, или боятся получить серьезного втыка за угробленный за пол суток радиатор, стоимостью под 700 р, вот и решили эту залипуху сделать.
    1 балл
  34. @tehsvar это Алексей. Целой конторы стоит .
    1 балл
×
×
  • Создать...