Мастер Точмаш 23 Опубликовано 7 марта, 2023 Мастер Поделиться Опубликовано 7 марта, 2023 § 79. Сварка в углекислом газе Советскими исследователями К. В. Любавским и Н. М. Новожиловым в начале 50-х годов был разработан способ сварки в защитной среде углекислого газа, который в настоящее время нашел широкое применение во всех странах мира. Сущность процесса сварки в углекислом газе заключается в следующем. Поступающий в зону сварки углекислый газ защищает ее от вредного влияния атмосферы воздуха. Причем при высокой температуре сварочной дуги углекислый газ частично диссоциируется на окись углерода и кислород 2СO2 ↔ 2СO + O2. В результате в зоне дуги образуется смесь из трех различных газов: углекислого газа, окиси углерода и кислорода. Вследствие того, что температура дуги не везде одинакова, неодинаков и состав газовой смеси в зоне дуги. В центральной части, где температура дуги высокая, углекислый газ диссоциирует почти полностью. В области, прилегающей к сварочной ванне, количество углекислого газа преобладает над суммарным количеством кислорода и окиси углерода. Все три компонента газовой смеси защищают металл от воздействия воздуха, в то же время окисляют его как при переходе капель электродной проволоки в сварочную ванну, так и на поверхности. Fe + СO2 ↔ FeO + СО; Mn + СO2 ↔ МnО + СО; Si + 2СO2 ↔ SiO2 + 2СО; 2С + 2СO2 2СО + 2СО; 2Fe + O2 ↔ 2FeO; 2Мn + O2 ↔ 2МnО; Si + O2 ↔ SiO2; 2C + 2O2 ↔ 2CO2. Порядок и интенсивность окисления элементов зависят от их химического сродства к кислороду. Вначале окисляется кремний, имеющий большее сродство к кислороду, чем другие элементы. Окисление марганца также происходит значительно интенсивнее, чем окисление железа и углерода. Следовательно, нейтрализовать окислительный потенциал углекислого газа можно введением в присадочную проволоку избыточного кремния и марганца. В этом случае погашаются реакции окисления железа и образования окиси углерода, но сохраняются защитные функции углекислого газа в отношении атмосферы воздуха. Качество наплавленного металла зависит от процентного содержания кремния и марганца в сварочной проволоке (при условии наличия необходимого количества углекислого газа). Хорошее качество наплавленного металла при сварке углеродистых сталей гарантируется тогда, когда в составе проволоки соотношение Мn к Si составит Mn/Si = 1,5 ÷ 2. Образовавшиеся окислы кремния и марганца не растворяются в жидком металле, а вступают во взаимодействие друг с другом, образуя легкоплавкое соединение, которое в виде шлака всплывает на поверхность сварочной ванны. Сварку в углекислом газе выполняют во всех пространственных положениях; вертикальные и потолочные швы выполняют на малых токах и проволокой небольшого диаметра. Параметрами режима сварки в углекислом газе являются род и полярность тока, диаметр электродной проволоки, величина сварочного тока, напряжение дуги, расход углекислого газа, вылет и наклон электродной проволоки по отношению к свариваемому изделию. При сварке применяют постоянный ток обратной полярности. Величину сварочного тока и диаметр электродной проволоки выбирают в зависимости от толщины металла и положения шва в пространстве. В табл. 38 показаны приемы перемещения конца электродной проволоки при сварке стыкового соединения в нижнем положении. Материалы и оборудование. Углекислый газ имеет следующие особенности: при повышении давления превращается в жидкость; при охлаждении без давления переходит в твердое состояние - сухой лед; сухой лед при повышении температуры переходит непосредственно в газ, минуя жидкое состояние. Для сварки применяют углекислоту по ГОСТ 8050 - 76, поставляемую в баллонах в жидком состоянии. При испарении 1 кг жидкой углекислоты при 0°С и 760 мм рт. ст. образуется 506,8 л газа. В стандартный баллон емкостью 40 л заливают 25 кг жидкой углекислоты, что составляет 12,67 м3 газа. Вредными примесями в углекислом газе являются азот и влага. Влага удаляется из газа осушителем, который заполняется силикагелем, алюмогелем или медным купоросом, которые перед заправкой в осушитель необходимо прокалить при температуре 250 -300°С в течение 2 - 2,5 ч. http://metallurgu.ru/books/item/f00/s00/z0000021/pic/000156.jpg Рис. 99. Схема поста полуавтоматической сварки тонкой электродной проволокой в углекислом газе: 1 — держатель, 2 — подающий механизм, 3 — кнопка включения, 4 — защитный щиток, 5 — манометр на 0,6 МПа, б — переходной штуцер для установки манометра, 7 — редуктор кислородный с манометром высокого давления, 8 — осушитель газа, 9 — подогреватель газа, 10 — баллон с углекислым газом, 11 — сварочный выпрямитель (либо генератор), 12 — пульт управления http://metallurgu.ru/books/item/f00/s00/z0000021/pic/000157.jpg 38. Приемы перемещения конца электродной проволоки при сварке соединения в нижнем положении Рекомендуется также для снижения влажности углекислого газа баллон с углекислотой ставить вентилем вниз (рис. 100) и дважды через 15-20 мин после опрокидывания баллона спускать воду. Сварочная проволока применяется в зависимости от марки свариваемой стали. В табл. 39 приведены некоторые марки сварочных проволок, применяемые при сварке различных сталей. http://metallurgu.ru/books/item/f00/s00/z0000021/pic/000158.jpg Рис. 100. Приспособление для удаления влаги из баллонов с углекислотой http://metallurgu.ru/books/item/f00/s00/z0000021/pic/000159.jpg 39. Применение марок проволоки для сварки сталей различных Сварочная головка типа ТСГ-7 предназначена для сварки в защитных газах, плавящимся колеблющимся электродом поворотных стыков труб из низкоуглеродистых и нержавеющих сталей без подкладных колец. http://metallurgu.ru/ 1 Ссылка на комментарий Поделиться на другие сайты Поделиться
Модератор welderman Опубликовано 9 июня, 2023 Модератор Поделиться Опубликовано 9 июня, 2023 Ну и для гурманов-работы Потапьевского А.Г. Сварка в защитных газах плавящимся электродом Ч1- Сварка в активных газах. Потапьевский А.Г..pdf 1 Ссылка на комментарий Поделиться на другие сайты Поделиться
Модератор welderman Опубликовано 9 июня, 2023 Модератор Поделиться Опубликовано 9 июня, 2023 И ещё- Сварка сталей в защитных газах плавящимся электродом.pdf 1 Ссылка на комментарий Поделиться на другие сайты Поделиться
Мастер Точмаш 23 Опубликовано 19 ноября, 2023 Автор Мастер Поделиться Опубликовано 19 ноября, 2023 Мелкокапельный перенос металла МЕЖДУНАРОДНЫЙ ИНЖЕНЕР-СВАРЩИК Мелкокапельный перенос металла характеризуется каплями одинаковых малых размеров (близкими к диаметру электрода), отделяющихся от торца электрода с высокой частотой (см. Рис. 1.8.9). Такой тип переноса обычно наблюдается при сварке MIG на обратной полярности в среде защитной смеси на базе аргона и при высоких напряжениях дуги. Главным условием для получения такого типа переноса является превышение током сварки определённого значения называемого критическим током (/*р). Рис. 1.8.16 Определение значения критического тока При повышении тока сварки до уровня 1кр размер капель постепенно снижается вместе с таким же постепенным ростом частоты перехода капель (Рис. 1.8.16). Однако после превышения уровня критического тока происходит резкое сокращение времени формирования капли до её отделения, что также приводит к соответствующему резком возрастанию частоты перехода капель. В этих условиях капли не успевают достигать больших размеров. Изображения района дуги показывают, что при этом дуга полностью охватывает каплю или, по крайней мере большую её половину (Рис 1.8.17, в, и Рис. 1.8.18, в, г), в то время как при крупнопанельном переносе металла (Рис. 1.8.17, 6 и Рис. 1.8.18, а), или переносе с короткими замыканиями (Рис. 1.8.17, а), дуга охватывает только небольшую часть в нижней части капли. Как было показано выше, в случае Рис. 1.8.17 Размеры и положение активного пятна на каппе при переносе с короткими замыканиями мелкокапельного переноса пло - крупнокапельном (6) и мелкокапельном (в) щадь активного пятна на капле (v1f_ 46 v5f_ 130в 595) больше, чем площадь поперечного сечения электрода, и осевая составляющая электромагнитной силы меняет своё направление, становясь силой способствующей отделению капли. Рис. 1.8.18 Характер переноса металла при сварке MIG в среде Аг2%02 электродной проволокой ER70S-3 диаметром 1.6 мм при различных режимах сварки. а) /с. = 180 А, ид = 29 В; 6) /св = 240 A, U0 = 29 В. в) /св = 280 A, U9 = 29 В; г) /с, = 300 A. U0 = 29 В. д) /с, = 320 A. U0 = 29 В; е) = 420 A. U6 = 33 В Значение критического тока зависит, главным образом, от материала и диаметра электрода, вылета электрода и типа защитного газа (Табл. 1.8.2). Защитными атмосферами, которые обеспечивают мелкокапельный перенос металла, являются смеси богатые на аргон с низким содержанием кислорода и С02, в частности, содержание последнего не должно превышать 20%. По мере повышения содержания С02 значение критического тока возрастает (см. Табл. 1.8.2), что наблюдается до. примерно. 30% С02, после чего мелкокапельный перенос металла обычно не достигается. Добавки 02 к аргону сначала снижают ток пока его содержание не достигнет 5%, после чего, однако, наблюдается рост значения 1^. Азот и гелий также ухудшают условия достижения мелкокапельного переноса. Например, этот тип переноса наблюдался при сварке малоуглеродистой проволокой в тройной защитной атмосфере Аг-Не-2%02 при содержании гелия до 75%. но не был достижим применительно к смеси Не-2%02 в отсутствии аргона. Нанесение (напыление) на проволоку элементов с низким потенциалом ионизации способствует получению мелкокапельного переноса, даже в случае сварки MAG в среде чистого С02 или в случае сварке MIG на прямой полярности. В последнем случае, мелкокапельный перенос достигается также при увеличении давления окружающей среды. Увеличение вылета электрода оказывает незначительное воздействие на значение критического тока, с тенденцией к его понижению. Табл. 1.8.2 Значения критического тока для электродов различных материалов и диаметров, а также различных газовых смесей Материал электродной проволоки Диаметр электродной проволоки, мм Защитная атмосфера Критический ток, А Малоуглеродистая сталь 0.8 0.9 1.0 1.1 1.2 1.6 98%Аг + 2%02 150-160 165 185 220 220 275 Малоуглеродистая сталь 0.8 1.0 1.2 1.6 95%Аг + 5%С02 140 180 240 280 Малоуглеродистая сталь 0.8 1.0 1.2 1.6 85%Аг + 15%С02 155 200 260 280 Малоуглеродистая сталь 0.8 1.0 1.2 1.6 80%Аг + 20%С03 160 200 275 280 0.9 170 1.0 170 Нержавеющая сталь 1.1 98% Аг + 2%02 225 1.2 225 1.6 285 0.8 90 - 95 1.0 100 Алюминий 1.1 Аргон 120 1.2 135 1.6 170 - 180 0.9 180 Очищенная медь 1.1 Аргон 210 1.6 310 0.9 165 Бронза 1.1 Аргон 205 1.6 270 Рис. 1.8.19 Сварка MIG с мелкокапельным переносом металла в вертикальном положении 507 508 Малоуглеродистая электродная провопока диаметром 1.0 мм, Vnnp = 8,6 м/мин. защитный газ Аг+5%02 Электромагнитная сила, имеющая квадратичную зависимость от тока, оказывает решающее воздействие на переход капель электродного металла При сварке на токах выше критических она легко преодолевает силы препятствующие отделению капли, т. е., силу поверхностного натяжения и результирующую реакции потока паров с поверхности капли. Капли просто принудительно срываются этой силой с торца электрода и посылаются с большой скоростью в сторону ванны (откуда возник английский вариант названия этого типа переноса - Spray Projected Transfer). Траектория полёта капель совпадает с линией оси электрода каким бы не был угол его наклона (см. Рис. 1.8.9 и 1.8.19). Таким образом, мелкокапельный перенос металла может быть реализован в любом пространственном положении. Однако, в связи с тем, что этот тип переноса требует использования высокого тока сварки, приводящего к высокому тепловложе - нию и большой сварочной ванне, он может быть применён топько в нижнем положении и не приемлем для сварки тонколистового металла. Его используют для сварки и заполнения разделок металла больших толщин (обычно более 3 мм толщиной), в первую очередь при сварке тяжёлых металлоконструкций и в кораблестроении. Главными характеристиками процесса сварки с мелкокапельным переносом являются: высокая стабильность дуги, практическое отсутствие разбрызгивания, умеренное образование сварочных дымов, хорошая смачиваемость кромок шва и высокое проплавление, гладкая и равномерная поверхность сварного шва, возможность ведения сварки на повышенных режимах и высокая скорость наплавки. Изменения напряжения дуги, тока сварки, звука и интенсивности светового излучения, вызываемые переносом металла, также достаточно низки по сравнению с двумя другими типами переноса описанными выше. Благодаря этим достоинствам мелкокапельный перенос металла является всегда желательным там, где его применение возможно, однако, он требует строгого выбора и поддержания параметров процесса сварки. Мелкокапельный перенос металла послужил базой для разработки способа управления переносом металла с использованием импульсов тока, реализованного в виде ИДС, и идея которого состояла в получении мелкокапельного переноса металла при среднем токе сварки ниже критического. Более подробно о процессе ИДС речь идёт в этом Разделе ниже. По мере повышения тока сварки мелкокапельный перенос переходит в струйный и затем в струйный с вращением, которые описаны ниже. Капля начинается формироваться на торце электрода. Частота переноса капель при сварке с короткими замыканиями лежит в пределах от 20 до 200 капель в секунду Благодаря низким режимам сварки, а также тому факту, что в течение части времени дуга не горит, тепловложение в основной металл при сварке с короткими замыканиями ограничено. Эта особенность процесса сварки с короткими замыканиями делает его наиболее подходящим для сварки тонколистового металла Сварочная ванна малых размеров и короткая дуга, ограничивающая чрезмерный рост капель, обеспечивают лёгкое управление процессом и позволяют осуществлять сварку во всех пространственных положениях включая потолочное (Рис. 1.8.11). В случае использования этого процесса для сварки металла больших толщин могут наблюдаться подрезы и отсутствие проплавления. Рис. 1.8.11 Сварка MIG с короткими замыканиями в вертикальном положении Малоугперодистая электродная проволока диаметром 1,0 мм, Vnrtp = 5,0 м/мин, защитный газ Аг+5%Ог, (V09) Этим объясняются трудности сварки процессом MIG с короткими замыканиями алюминия и его сплавов, так как высокая теплопроводность этих материалов приводит к быстрому охлаждению и кристаллизации сварочной ванны, затрудняя расплавление основного металла и приводя к захвату газов в металле шва (порождая пористость). Перенос с короткими замыканиями может использоваться как для процесса MIG (с защитной атмосферой на основе инертных газов), так и для процесса MAG (с защитной смесью на основе СОг). Однако, если первый процесс может быть реализован с любым типом переноса металла представленного на Рис. 1.8.9, то для процесса сварки MAG перенос с короткими замыканиями является основным. Этот тип переноса при сварке в среде СОг имеет случайный характер, выраженный в нестабильности времени короткого замыкания и интервала между короткими замыкания Перенос металла взрывного типа Перенос металла взрывного типа имеет место, когда в результате химических реакций высокоактивных компонентов, находящихся в электродной проволоке, внутри формирующихся капель образуются газовые пузыри, которые растут сливаясь один с другим и, в дальнейшем, взрываются из-за перегрева газа внутри них, разрушая каплю. Такой тип переноса наблюдается, как правило, при использовании проволок изготовленных из алюминиевых сплавов (содержащих магний). Совершенно очевидно, что этот тип переноса сопровождается образованием большого числа мелких брызг и нарушениями стабильности протекания процесса сварки, из-за чего он является нежелательным при сварке MIG/MAG. https://msd.com.ua/mezhdunarodnyj-inzhener-svarshhik/melkokapelnyj-perenos-metalla/ 1 Ссылка на комментарий Поделиться на другие сайты Поделиться
Мастер Точмаш 23 Опубликовано 19 ноября, 2023 Автор Мастер Поделиться Опубликовано 19 ноября, 2023 Струйный перенос металла Мелкокапельный перенос выше МЕЖДУНАРОДНЫЙ ИНЖЕНЕР-СВАРЩИК При мелкокапельном переносе металла торец электрода принимает заострённую форму, близкую к форме конуса, однако высота этого конуса невелика и. как правило, не превышает диаметра электрода (см. Рис. 1.8.9, 1.8.18, в. г, и 1.8.19). При дальнейшем повышении тока сварки дуга начинает поглощать всё ббльшую часть торца электрода, приводя к его перегреву и переходу в вязко-жидкое состояние. При этом, под воздействием электромагнитной силы торец электрода принимает форму удлинённого цилиндра (напоминающего по форме цилиндрический образец после испытаний на разрыв), высота которого может достигать нескольких диаметров электрода (см. Рис. 1.8.9, 1.8.18, д, е). Капли срываются с вершины конуса близко одна за другой, образуя почти непрерывный поток капель. Конус жидкого металла на торце электрода может удлиняться до такой степени, что может вызывать случайные короткие замыкания, нарушающие стабильность процесса сварки. Этот тип переноса металла имеет технологические характеризуется близкие к мелкокапельному переносу. Струйно-вращательный перенос металла При дальнейшем повышении тока сварки наблюдается следующее преобразование типа переноса металла. Удлинённый конус вязко-жидкого металла теряет устойчивость и начинает вращаться под действием магнитного поля вызываемого высоким током сварки. Вращение вытянутой части торца электрода может описывать форму конуса или даже спирали. В этих условиях перенос металла уже не является более аксиальным; капли начинают отрываться в сторону от оси электрода, иногда, почти в радиальном направлении к нему. При этом, обычно, образуется много мелких брызг металла. Достижение струйного переноса с вращением облегчается при увеличении вылета электрода. В связи с тем, что при струйных типах переноса металла вытянутая часть торца электрода находится внутри дуги предполагается, что температура капель и образование сварочных дымов в этих условиях повышается. Струйные типы переноса металла достигаются, обычно, применительно к стальным электродным проволокам и не наблюдаются для других материалов электродов. Пример смешанного переноса «Короткие замыкания - Мепкокапельный» Электронный источник питания Малоуглеродистая электродная проволока диаметром 1,0 мм, Uует = 21 В. U0 = 20,7 В, /„ = 161 A, Vnnp = 7,0 м/мин, VC9 = 30 см/мин, вылет электрода = 18 мм, защитный газ Аг+5%02 Смешанный перенос «Короткие замыкания - Струйный» Этот тип смешанного переноса наблюдается в тех же условиях, что и предыдущий, за исключением того, что дуга теперь более длинная. Это позволяет (после окончания короткого замыкания) сформироваться на торце электрода конусу жидкого металла. Пример смешанного переноса «Короткие замыкания - Струйный» Условия сварки примерно теже, что и для эксперимента показанного но U^m = 24 В, U0 - 23.1 В. /св = 158 А Смешанный перенос «Короткие замыкания - Крупно капельный Отклонённый». Перенос металла с короткими замыканиями при сварке MAG в среде СОг, обычно, имеет элементы крупнокапельного отклонённого переноса. С другой стороны, такой тип переноса может наблюдается и в случае сварки MIG, если установлены не оптимальные параметры процесса. На Рис. показан такой пример для случая, когда напряжение дуги (длина дуги) выбрано слишком высоким. Пример переноса метапла с короткими замыканиями, имеющего элементы крупнокапельного отклоненного переноса Электронный источник питания Малоуглеродистая электродная проволока диаметром 1,0 мм. U0 = 20,5 В; /и = 121 A, Vnnp = 5.7 м/мин. Vct = 30 см/мин. выпет электрода = 18 мм. защитный газ Аг+5%02 Смешанный перенос «Крупнокапельный - Мелкокапельный» Этот тип смешанного переноса металла вызывается чрезмерными колебаниями тока выдаваемыми источником питания в ответ на изменения электрического сопротивления на участке сварочной цепи «вылет электрода - капля - дуга» при формировании и отделении капли. В общей форме, по мере роста капли электрическое сопротивление повышается, что приводит к понижению тока, к снижению скорости расплавления электрода и к увеличению вылета электрода. При этом, из-за снижения тока растёт размер, который могут достигать капли (до нескольких диаметров электрода, т. е., больше, чем при крупнокапельном переносе металла). После отделения капли и, соответствующего снижения электрического сопротивления на данном участке сварочной цепи, ток сварки возрастает. При этом, его значение может превысить уровень критического тока, что может привести к формированию мелких капель электродного металла. Особенности смешанного переноса такого типа определяются характеристиками источника питания. Пример смешанного переноса метапла «Крупнокапельный - Мелкокапепьный» Эпектронный источник питания Малоуглеродистая электродная проволока диаметром 1.0 мм. U0 = 27.9 В. /с, = 166 A. Vanp = 6.3 м/мин. Vc, = 30 см/мин. вылет электрода = 18 мм. защитный газ Аг+5%02 Смешанный перенос «Крупнокапельный - С Короткими Замыканиями - Струйный». В некоторых случаях, комбинация различных факторов (типа газовой защиты, размеров капель, динамических свойств источника питания, длины дуги и др.) может приводить к таким значительным изменениям тока, что после отделения капли он может существенно превышать уровень критического тока, вызывая возникновение струйного переноса, как показано на Рис. 1.8.24 (кадры 1045 ... 1090). Обычно в этих условиях, капля перед отделением от торца электрода касается поверхности сварочной ванны, вызывая короткие замыкания. Рис. 1.8.24 Пример смешанного переноса металла «Крупнокапельный - с Короткими Замыканиями - Мелкокапельный». Электронный источник питания. Малоуглеродистая электродная проволока диаметром 1,0 мм, U0 = 27.5 В; 1св = 169 A; Vnnp = 6,5 м/мин; Vce = 36 см/мин; вылет электрода =18 мм; защитный газ Аг+2%02. Смешанный перенос «Мелкокапельный - Струйный» Переход струйного переноса металла (кадры 899 ... 906) в мелкокапельный кадры 1206 ... 1300) и наоборот может вызываться изменениями тока равными всего 15 А. Из приведенного краткого анализа типов смешанного переноса следует, что они вызываются, в основном, нарушениями в работе источников питания или неоптимальной регулировкой их параметров. Как правило, смешанный перенос металла является нежелательным и его следует избегать. Электронный источник питания. Малоуглеродистая электродная проволока диаметром 1.0 мм; U0 = 28,7 В. /„ = 207 A; Vnnp = 8.7 м/мин; Vce = 36 см/мин; вылет электрода = 18 мм; защитный газ Ar+2%Oz. https://msd.com.ua/mezhdunarodnyj-inzhener-svarshhik/strujnyj-perenos-metalla/ 1 Ссылка на комментарий Поделиться на другие сайты Поделиться
Мастер Точмаш 23 Опубликовано 28 ноября, 2023 Автор Мастер Поделиться Опубликовано 28 ноября, 2023 Эффект саморегулирования длины дуги Сварочный контур с плавящимся электродом обладает свойством саморегулирования (самовыравнивания) (рис.2.1.1). Рис.2.1.1. Структура сварочного контура: ИП - источник питания; Д - дуга; СВ - сварочная ванна; F0, Fип, Fд - возмущения Это свойство используется в простейших устройствах для механизированной дуговой сварки, осуществляющих подачу электродной проволоки в зону сварки с постоянной скоростью. Для прояснения сущности процесса саморегулирования дуги обратимся к регулировочным вольт-амперным характеристикам дуги с плавящимся электродом (рис.2.1.2). Рис.2.1.2. Характеристики устойчивой работы сварочной головки с различной скоростью подачи электрода Vn и статическая внешняя характеристика источника питания Чем больше скорость подачи Vn электродной проволоки, тем больше сварочный ток. Пусть устойчивый режим сварки определяется точкой А пересечения кривой устойчивой работы Vn2 с внешней характеристикой источника питания. Если по каким-либо причинам дуга удлинилась и напряжение на ней достигло Uд1>Uд2 , то новое состояние в точке В при Vn=Vn1 оказывается неустойчивым. Новому электрическому режиму горения дуги в точке В в стационарном режиме должна соответствовать другая скорость плавления электродной проволоки Vэ=Vn1. Эта скорость плавления при Iд1<Iд2 меньше скорости подачи электрода Vn2, что следует из сопоставления кривых устойчивой работы. Скорость изменения дугового промежутка в этом случае . (2.1.1) Так как Vэ<Vп2 , то дуговой промежуток сокращается, напряжение по дуге падает до тех пор, пока опять не наступит равенство скоростей плавления и подачи. Таким образом восстанавливается режим, соответствующий точке А. При случайном уменьшении длины дуги увеличение силы тока сопровождается увеличением скорости плавления, приводящим опять к восстановлению дугового промежутка. Однако не все виды возмущений могут быть отработаны системой саморегулирования. Например, быстротечные изменения длины дугового промежутка, вызванные капельным переносом электродного металла, саморегулирующейся системой не отрабатываются вследствие сравнительно высокой частоты перехода капель. Не хватает быстродействия системы. Изменение вылета электрода приводит к смещению регулировочной характеристики в сторону меньших токов, если вылет увеличивается, и в сторону больших токов, если вылет уменьшается. 2.1.1.2. Принципиальная схема системы автоматического регулирования дуги саморегулированием (АРДС) Простейшие системы автоматического регулирования тока и напряжения дуги состоят из механизма подачи электродной проволоки МП, дуги Д и источника питания (рис.2.1.3). В литературе такие системы называют системами автоматического регулирования дуги саморегулированием (АРДС). На их основе построены автоматы и полуавтоматы с постоянной скоростью подачи электродной проволоки ( трактор ТС-17 и его модификации, автоматы А-384 МК, А-616М, А-688, АБС, А-184 и др. полуавтоматы А-537 Р,ПДГ-500-1, ПШП-16 и др.). Рис.2.1.3. Принципиальная схема системы автоматического регулирования дуги саморегулированием (АРДС) В этих системах механизм подачи электрода МП-задающий орган, а постоянная скорость подачи электрода Vn - задающий параметр. С его помощью устанавливается требуемая сила тока I3 в сварочном контуре. В процессе сварки заданная скорость подачи электрода Vn сравнивается со скоростью его плавления Vэ. При достижении равенства Vn = Vэ в сварочном контуре устанавливается определенная сила тока Iд, которая с требуемой точностью поддерживается системой саморегулирования на уровне Iд. Точность работы системы саморегулирования зависит от соотношения коэффициентов саморегулирования по току Кст и по напряжению Ксн. Эти коэффициенты характеризуются отношением приращения скорости подачи DVn к приращению соответственно по току дуги DIд и по напряжению на дуге DUд.https://poznayka.org/s119588t2.html 1 Ссылка на комментарий Поделиться на другие сайты Поделиться
Мастер Точмаш 23 Опубликовано 28 ноября, 2023 Автор Мастер Поделиться Опубликовано 28 ноября, 2023 Дефекты При сварке кремнемаргацовистыми проволокой малоуглеродистых и низколегированных сталей в некоторых случаях возможно образование шлака -MnO / SiO2,что может вызвать увеличение количества дисперсных включений ,снижающих пластические свойства металла шва.Снижение силикатных включений при сварке в СО2 способствует достаточно высокое соотношение марганцем и кремнием в металле шва,при котором обеспечивается образование жидких шлаков и (Тпл.1600С )и всплытие их на поверхность. Также возможно возникновение свищей,нарушающих герметичность св.шва при сварке низкоуглеродистой стали,которые требуют полной вырезки до основания шва.Это относиться к сварочной проволоки вследствие неоднородности по хим.составу. 1 2 Ссылка на комментарий Поделиться на другие сайты Поделиться
Рекомендуемые сообщения