Перейти к содержанию

Рекомендуемые сообщения

  • 5 недель спустя...
  • 1 месяц спустя...

4-6    ОБРАТНЫЙ ВАЛИК

 

4-6-1   Приспособление-подкладка

При сварке тонкостенных листов применяется метод исполнения работ, по которому одним проходом сваркой с лицевой поверхности основного металла и на обратной поверхности формируется валик. Валик, который формируется на обратной поверхности основного металла, называется обратным валиком. В процессе сварки невозможно наблюдать ход формирования этого обратного валика, так что для получения хорошего результата сварки требуется достаточно высокий уровень навыков. Однако Аргонодуговая сварка позволяет формировать обратный валик легче, чем другой метод сварки, так что часто применяется не только при сварке тонкостенных листов, но и для первого слоя многослойной сварки.

Чтобы сформировать обратный валик, нужно расплавить основной металл достаточно до обратной поверхности. Однако расплавленный металл держится за счет поверхностного притяжения, так что, если ванна расплавленного металла становится слишком большой, поверхностное притяжение не может держать ванну расплавленного металла, происходит вытекание части расплавленного металла и в ванне будут пробиты поры. Чтобы предотвратить это вытекание части расплавленного металла, используется приспособление-подкладка, представленная на рис. 4.44.

Обычно подкладка изготавливается из меди, у которой удельная теплопроводность высока.  Пользуясь охлаждающим действием подкладки, сдерживают возрастание ширины обратного валика, вызываемое чрезмерным тепловложением, одновременно предотвращают приплавление подкладки к обратному валику и уменьшают деформацию, вызываемую сварочным теплом. В случае сварки тонкостенных листов приспособления-подкладки часто служат и приспособлениями-ограничителями сварного соединения.

Форма паза подкладки также является одним из важных факторов обратного валика, и варьируется в зависимости от толщины стенки и т.д. При установке формы следует ориентироваться на глубину (D) 0.5 - 2 мм и ширину (W) 2-6 мм. Если формируют обратный валик на сварочном соединении с плотно прилегающими кромками в вершине разделки шва. не устанавливая зазора, будет потерян выход газа, выделяемого из расплавленного металла, и этот газ устремится к поверхности валика, что может привести к образованию раковин или поверхностных раковин.

В угловом соединении и соединении с отбортовкой двух кромок также часто применяется приспособление-подкладка, пример которых представлен на рис. 4.45. Кроме того, в случае обратного валика для толстостенных листов или крупных конструкций и т.д. в качестве материала подкладки могут быть применены твердый флюс, стеклянная лента с флюсом и т.д.. как представлено на рис. 4.46. 

 

post-2215-0-56214600-1424271969_thumb.jpg

 

 

4-6-2 Защита обратной поверхности

Поскольку    обратный   валик   относится   к   затвердевшему   состоянию расплавленного  металла,   в  случае  нержавеющей  стали,  титана  и   прочих металлов, склонных к окислению при высокой температуре, необходимо обеспечить обратный валик защитой. В некоторых случаях газовая защита обратного валика называется обратной защитой

Например, в случае нержавеющей стали, если формируют обратный валик без защиты обратной стороны, окисление происходит на значительную  глубину обратного валика, как показано на рис. 4.47 (а) и с первого взгляда виден некачественный внешний вид обратного валика. На рис. 4.47 (б) показан пример с защитой обратной стороны. Обратный валик защищен за счет газовой защиты и показывает свой качественный внешний вид.

 

post-2215-0-83108600-1424272042_thumb.jpg

 

Для защиты обратной поверхности обычно с использованием подкладки, пример которой представлен на рис. 4.48. подают аргон на обратную поверхность зоны сварки через выхлопные сопла этой подкладки. Если расход аргона слишком велик, то аргон может захватить воздух и тем самым понизить эффект защиты, так что нельзя подавать аргон больше, чем необходимо.

При сварке труб с малым внутренним диаметром использовать подкладку невозможно, так что защиту с внутренней стороны осуществляют, как показано на рис. 4.49. В этом случае необходимо предусмотреть не только вход защитного газа, но и его выход, чтобы был получен сквозной поток защитного газа.

Таким образом, чтобы обеспечить обратную поверхность полной защитой, нужно сложное оборудование и увеличение расхода газа. С другой стороны, в некоторых случаях невозможно обеспечивать обратную поверхность защитой из-за ограничения формой сварного соединения или т.д., так что на предприятиях продаются покрытые присадочные прутки для Аргонодуговой сварки, поверхность которых покрыта флюсом, и присадочные прутки с флюсом, которые включают в себя флюс. С использованием этих присадочных прутков обратные валики защищаются шлаком и получается хороший результат.

 

4-6-3  Формирование обратного валика

При стыковой сварке тонкостенных листов без подкладки формы валика подразделяются, как представлено на рис. 4.50. В зоне (а) из-за нехватки тепловложения   расплавление  не  распространяется  до  обратной   стороны основного металла и обратный валик не формируется. В зоне (б) не полностью, но все-таки формируется обратный валик, однако велико обжатие ванны расплавленного металла давлением дуги в силу высокой скорости и сильного тока сварки, и в результате чего образуется подрез. В зоне (в) из-за чрезмерного тепловложения расплавленный металл вытекает и в ванне расплавленного металла пробивается пора. Следовательно, чтобы получить качественный обратный валик, (смотри) зону (г), сварку производят на слабом токе и низкой скорости.

 

post-2215-0-44003700-1424272116_thumb.jpg

 

Кроме того, по мере возрастания зазора в вершине разделки или смещения подходящая к сварке зона уменьшается и, если превышен допустимый предел, сварка сама становится невозможной. Допустимый предел зазора в вершине разделки и смешения не больше, чем 1/2 толщины стенки. В случае использовании приспособления-подкладки, если устанавливают зазор в вершине разделки, можно формировать обратный валик легче, чем при стыковке участков притупления кромок друг к другу.

 

post-2215-0-90903200-1424272165_thumb.jpg

 

Выполняя сварку, работник сам почти не может непосредственно наблюдать ход формирования обратного валика, однако, если приобрел опыт в определенной степени, может сам предположительно судить о ходе формирования обратного валика, наблюдая за состоянием ванны расплавленного металла.

Например, можно наблюдать следующие явления;

Ø     Пока расплавление не распространяется до обратной  поверхности основного металла, ванна расплавленного металла выглядит немного выпуклой в силу теплового расширения.

Ø     Когда   расплавление   достигло   обратной    поверхности   основного металла   и   формируется   обратный   валик,   расплавленный   металл протекает    к    обратной    стороне,    так    что    поверхность    ванны расплавленного металла выглядит немного вогнутой.

Ø     Когда обратный валик формируется устойчиво, ванна расплавленного металла выглядит относительно прозрачной и ее размер почти не изменяется.

Ø     Когда     обратный     валик     не     формируется     нормально,     ванна расплавленного металла резко теряет свое прозрачное ощущение и выглядит немного черноватой. Размер ванны расплавленного металла уменьшается.

Ø     Непосредственно       перед       возникновением       прожога.       Ванна расплавленного металла выглядит так, как будто резко увеличила свое прозрачное ощущение, и размер ванны расплавленного металла также увеличивается.

Следовательно, следует сначала расплавить поверхности притупления кромки до обратной стороны, приостанавливая горелку на начальной точке сварки, и. суля по поведению и состоянию ванны расплавленного металла, убедиться в формировании обратного валика, а затем переместить горелку, обращая внимание, на постоянность размера ванны расплавленного металла.

Даже когда на начальной точке сварки успели сформировать правильный обратный валик, если затем скорость сварки становиться слишком большой или малой, то дальше или не формируется обратный валик или происходит прожог. Так что следует по возможности приобрести навыки в перемещении горелки на равномерной скорости. Кроме того, изменение длины дуги также оказывает влияние па формирование обратного валика, так что следует обучаться, чтобы по возможности уменьшить дрожь руки. Форма конца вольфрамового электрода также оказывает влияние, так что следует полировать электрод, форма которого изменилась вследствие износа, заблаговременно.

 

  • Upvote 9
Ссылка на комментарий
Поделиться на другие сайты

  • 1 месяц спустя...

4-9     НЕРАЗРУШАЮЩИЕ ИСПЫТАНИЯ ЗОНЫ СВАРКИ

 

4-9-1  Вид неразрушающих испытаний

Чтобы убедиться в том, что сварные швы удовлетворяют заранее установленным эксплуатационным качествам с учетом цели использования, рабочих условий, рабочей среды и т.д., производят различные испытания и по их результатам судят о приемке сварных швов.

Внешний осмотр, производимый визуально, позволяет обнаружить дефекты, раскрытые на поверхности с относительно большими размерами, но не позволяет обнаружить внутренние дефекты, мелкие поверхностные дефекты и пр. Разрушающие испытания, при которых разрушают, деформируют, химически обрабатывают и т.д. сварные швы, позволяют подробно проверить внутренние дефекты, мелкие дефекты и прочие характеристики сварных швов, но не могут быть применены к действующим изделиям.

Неразрушающие испытания позволяют проверить внутренние дефекты, мелкие дефекты и пр. сварных швов, не нарушая форму, размеры и эксплуатационные качества изделий, и в основном находят применение следующие 4 вида;

(1) Рентгенодефектоскоиия (RT)

(2) Ультразвуковая дефектоскопия (UT)

(3) Магнитопорошковая дефектоскопия (МТ)

(4) Капиллярная дефектоскопия (РТ)

Среди этих 4 видов испытаний для обнаружения внутренних дефектов применяются ренттенодефектоскопия и ультразвуковая дефектоскопия, для обнаружения поверхностных дефектов применяются магнитопорошковая дефектоскопия и капиллярная дефектоскопия.

 

4-9-2  Рентгенодефектоскопия

Рентгенодефектоскопия, находящая широкое применение в качестве неразрушающих испытаний сварных швов, представляет собой метод обнаружения, в основном, внутренних дефектов с помощью рентгеновских лучей или гамма-лучей, как показано на рис. 4.67.

Когда облучают сварной шов рентгеновскими лучами от источника рентгеновского излучения, рентгеновские лучи, прошедшие через сварной шов, засвечивают рентгеновскую пленку, расположенную на задней стороне исследуемого объекта. Если сварной шов обладает раковинами, трещинами и прочими полостями или шлаком и прочими инородными включениями, рентгеновские лучи не затухают так, как проходят через нормальные части, и засвечивают пленку интенсивно. В результате этого при проявлении одни участки, обладающие дефектами, темнеют, и тем самым можно обнаруживать размеры, формы и положения дефектов.

Этот метол испытания позволяет оставлять результаты испытаний в виде пленок, так что обладает способностью к регистрации и сохранению, и находит частое применение в разных областях. В связи с тем, что используются радиоактивные лучи, вредные для организма, этим методом испытания могут заниматься только те, кто прошел государственный экзамен.

post-2215-0-30407600-1428677770_thumb.png

4-9-3 Ультразвуковая дефектоскопия

Ультразвуковые волны по своему свойству распространяются внутри твердого тела или жидкости прямолинейно и отражаются, если на пути волн встречаются дефекты или прочие инородные предметы. Ультразвуковая дефектоскопия пользуется этим свойством для проверки сварных швов на наличие внутренних дефектов.

Метод испытаний в основном подразделяется на два, а именно на вертикальный метод дефектоскопии и угловой метод дефектоскопии. На рис. 4.68 представлена вертикальная дефектоскопия. Как показана на (а), приводят щуп со встроенным осциллятором в контакт с поверхностью исследуемого объекта и посылают внутрь последнего ультразвуковые импульсы. В нормальных участках ультразвуковые импульсы отражаются от донной поверхности и воспринимаются щупом как эха донной поверхности. Однако, если во внутренности имеются дефекты, то ультразвуковые импульсы отражаются от них и превращаются в эха дефекта. В результате щуп воспринимает эхо дефектов и эхо донной поверхности.

Нa ультразвуковых дефектоскопах для индикации используются приемные телевизионные трубки, которые при наличии внутреннего дефекта отображают его в виде формы, как показано на (б). Поскольку скорость распространения ультразвуковых импульсов постоянна, по местоположениям эха дефекта можно определить глубину дефекта (Wj), по местоположениям эха донной поверхности - толщину стенки (Wь).

Этот метод дефектоскопии дает ультразвуковым импульсам проникать в исследуемый объект перпендикулярно к нему, так что подходит к обнаружению дефектов, параллельных его поверхности, и находит применение к сварным швам таврового соединения и углового соединения.

post-2215-0-39308000-1428677831_thumb.png

На рис. 4.69 представлен угловой метод дефектоскопии, при котором ультразвуковые импульсы проходят наклонно. Поскольку распространяются наклонно, после отражения от донной поверхности ультразвуковые импульсы не возвращаются в щуп, и не появляется эхо донной поверхности. Необходимо вычислять местоположения возникновения дефекта, основываясь на угле падения, угле преломления (О) и расстоянии до точки возникновения эха дефекта (Wj). Данный метод дефектоскопии в основном применяется к сварным швам стыковой сварки с разделкой кромок.

 

4-9-4 Maгнитопорошковая дефектоскопия

Если намагнитить магнитное тело, которое обладает трещиной или другим дефектом   близко к поверхности исследуемого объекта, как показано на рис. 4.70 магнитный пучок внутри исследуемого объекта обходит дефекты, которые имеют большое сопротивление, и частично превращается в поток рассеяния.

Если, заранее осыпав поверхность исследуемого объекта тонким однородным слоем магнитного порошка (железного порошка или пр.), намагничивают исследуемый объект, магнитный порошок сосредоточенно всасывается к местам, где появляется пучок рассеяния, что позволяет обнаружить дефекты и определить их местоположения. Этот метод испытания называется магнитопорошковой дефектоскопией, и при использовании магнитного порошка, цвет которого четко контрастирует с цветом поверхности исследуемого объекта, позволяет обнаружить мелкие дефекты, которые обнаружить невозможно невооруженным глазом.

post-2215-0-82126600-1428677886_thumb.png

Как показано на рис. 4.71, для генерации магнитного поля применяется (а) межполюсный метод или (б) метод со щупами. Исследуемые объекты ограничены стальным или прочими ферромагнитными материалами. Этот метод не применяется к нержавеющей стали, алюминиевому сплаву и прочим материалам, которые не поддаются намагничиванию.

post-2215-0-21767500-1428677940_thumb.png

Этот    метод    испытания    обладает    высокой    чувствительностью    к обнаружению дефектов, расположенных на. и близко к поверхности. Но он не эффективен для обнаружения внутренних дефектов, на которых пучок рассеяния не склонен к генерации, и во многих случаях применяется для обнаружения дефектов на поверхности разделки кромок, поверхности, подвергшейся дуговой строжке или устранению дефектов для восстановления.

 

4-9-5 Капиллярная дефектоскопия

Как показано на рис. 4.72, (а) дают проникающей жидкости красного цвета проникнуть в выходящие на поверхность дефекты, (б) потом удаляют избыток проникающей жидкости с поверхности, промывают ее, (в) наносят проявляющую жидкость белого цвета, в результате (г) проникшая в дефекты жидкость выходит на поверхность и образовывает индикаторные узлы красного цвета на белом фоне. Поскольку индикаторные узлы появляются красного цвета, контрастного с белым фоном, и шириной больше, чем у фактических дефектов, можно обнаруживать мелкие дефекты, которые не поддаются обнаружению невооруженным глазом. Этот метод испытания называется капиллярной дефектоскопией.

Имеется метод по такому же принципу, но при этом в качестве проникающей жидкость используют флуоресцентный состав, индикаторные узлы наблюдают с помощью ультрафиолетового света. Этот метод называется флуоресцентной капиллярной дефектоскопией.

Капиллярная дефектоскопия применяется с такой же целью, что и магнитопорошковая дефектоскопия, но позволяет обнаружить только выходящие на поверхность исследуемого объекта дефекты. Однако то, что исследуемое тело не обязательно должно быть магнитным телом, и простота метода испытания позволяют применять этот метод часто.

post-2215-0-98623000-1428677992_thumb.png

 

  • Upvote 5
Ссылка на комментарий
Поделиться на другие сайты

TIG СВАРКА НАГРЕТОЙ ПРОВОЛОКОЙ

 

Сварка TTG обладает большими достоинствами; операция относительно проста, получаются высококачественные сварные соединения, и в связи с тем, что можно управлять тепловложением и количеством наплавленного металла отдельно, устойчивый диапазон режима сварки широк. Однако она обладает недостатком, который заключается в том, что по сравнению с дуговой сварке в среде углекислого газа или сваркой металлическим электродом в среде газа производительность наплавки невелика.

Сварка TIG нагретой проволокой относится к методу исполнения работ, который исправляет вышеприведенный недостаток и повышает производительность наплавки. Как показано на рис. 5.11, устанавливают источник питания для нагрева проволоки отдельно от сварочного источника питания, подают тепло к присадочной проволоке в месте, расположенном на расстоянии нескольких десятков см от основного металла, и дают проволоке выделять резистивное тепло. Так как заранее нагревается, и в полурасплавленном состоянии добавляется к ванне расплавленного металла, присадочная проволока позволяет увеличивать количество наплавленного металла втрое по сравнению с обычной Аргонодуговой сваркой, как показано на рис. 5.12.в датчик и установив сварочную горелку.

post-2215-0-87953200-1428678212_thumb.png

Рис 5.11 Сварка TIG нагретой проволокой

Это не только способствует повышению производительности сварки толстостенных листов и ускоряет сварку тонкостенных листов, но и благодаря подогреву проволоки масло, прилегающее к поверхности присадочной проволоки, сжигается, что способствует сдержать возникновение раковин.

post-2215-0-47309900-1428678270_thumb.png

Кроме того разработаны различные изобретения для сдерживания магнитного дутья, которое вызывается током контура проволоки, или, наоборот, для пользования им.

Сварка TIG нагретой проволокой, относящаяся к пользованию резистивного тепловыделения проволоки, полезна для нержавеющей стали, никелевого сплава и пр., у которых резистивное тепловыделение велико, но в случае алюминиевого сплава, медного сплава, и пр., у которых резистивное тепловыделение мало, ее применение обусловлено определенными условиями.

 

 

  • Upvote 9
Ссылка на комментарий
Поделиться на другие сайты

5-3 СВАРКА НЕПОДВИЖНЫХ ТРУБ ВО ВСЕХ ПРОСТРАНСТВЕННЫХ ПОЛОЖЕНИЯХ

 

5-3-1  Переключение режимов сварки

В случае сварки горизонтальных неповоротных труб, как показано на рис. 5.13. в процессе 1 прохода сварки получается 4 положение сварки, а именно нижняя сварка, вертикальная сварка сверху-вниз, верхняя сварка, вертикальная сварка снизу-вверх. Поскольку глубина проплавления, внешний вид   сварного   шва,   вытекание   капель   расплавленного   металла,   форма обратного валика и прочие факторы обрабатываемости сварки различаются по каждому пространственному положению, при одинаковом режиме сварки для всех положений трудно получить однородный хороший результат сварки.

post-2215-0-20239700-1428678367_thumb.png

Чтобы   справится   с   изменением   положения   сварки,   как   правило, автоматам      сварки      неповоротных      труб      предусмотрена      функция последовательного автоматического переключения установленных 6-8 видов режима сварки. В табл. 5.1 приведен пример этой функции. Пространственное положение сварки показано в виде часов. 

 

post-2215-0-97782400-1428678417_thumb.png

В   некоторых   случаях,   когда  требуются   высокие  эксплуатационные качества сварных швов, с целью получения устойчивых обратных валиков применяют вставное кольцо, как показано на рис. 5.14. При использовании вставного кольца не понадобится присадочный металл, и, если дают вставному кольцу расплавляться полностью, формируется обратный валик, что облегчает работу и приносит устойчивость результатов. Кроме того, если при установке вставного кольца децентрируют его так, чтобы в позициях вертикального положения сверху-вниз и верхнего положения выступ во внутреннем направлении получился больше, можно предотвратить впадину обратного валика.

post-2215-0-63830300-1428678478_thumb.png

 

  • Upvote 8
Ссылка на комментарий
Поделиться на другие сайты

  • 7 месяцев спустя...

5-3-2  Автоматы сварки неповоротных труб

 

При сварке неповоротных труб сварщикам требуется высокий уровень квалификации по причине, что положение сварки меняется, рабочее пространство тесно, сварщики часто вынуждаются принимать неустойчивую позу. Использование сварочного автомата дает даже не квалифицированным работникам возможность пользоваться высоким качеством и высокой надежностью сварки.

Как показано на рис. 5.15, автомат сварки неповоротных труб состоит из сварочной головки, сварочного источника питания, блока управления, устройства циркуляции охлаждающей воды и пр. В зависимости от формы трубы сварочная головка подразделяется в основном на 3 вида, как показано на рис. 5.16.

На рис. 5.17 показана сварочная головка для труб миниатюрного диаметра, которая применяется для труб с наружным диаметром 34 мм и менее, снятие и установки которой осуществляется открытием и закрытием съемного рычага крайне просто. Для труб в этом диапазоне, обладающих тонкой стенкой, не понадобится присадочный металл, следовательно, не имеется механизм подачи присадочной проволоки.

На рис. 5.18 показана сварочная головка для труб малого диаметра, которая применяется для груб с наружным диаметром 27 - 130 мм. Сварочная головка включает в себя механизм подачи присадочной проволоки и механизм управления напряжением дуги, весит примерно 10 кг. имеет конструкцию, позволяющую упростить операцию снятия и установки на трубу.

На рис 5.19 показана сварочная головка для труб среднего и большого диаметра, которая применяется для труб с наружным диаметром 130 мм и более. Сварочная головка включает в себя не только механизм подачи проволоки, механизм управления напряжением дуги, но и механизм колебательного движения, и передвигается на направляющем кольце, установленном на трубу. Сварочная головка состоит из трех основных узлов, а именно блока колебательного движения, блока подачи проволоки и ходового блока.

post-2215-0-08473700-1448450773_thumb.png

 

post-2215-0-26429200-1448450838_thumb.png

 

Как примеры сварки с использованием автомата сварки неповоротных труб, на рис. 5.20 представлен шов стыкового соединения сварочной головкой для труб миниатюрного диаметра, на рис. 5.21 - шов сварки углевым швом, на рис. 5.22 представлено поперечное сечение стыкового соединения сварочной головкой для труб малого диаметра.

 

post-2215-0-33755700-1448450909_thumb.png

 

В последнее время в результате тенденции, связанной с развитием технологии электронного управления, к превращению сварочного источника питания в инвертер и к комплексированию блока управления появляется автомат сварки неповоротных труб, такой как представленный на рис. 5.23. По сравнению с традиционными автоматами оба из сварочного источника питания   и   блока   управления   этого   автомата  обеспечены   чрезвычайной компактностью и легкостью.

 

post-2215-0-33574400-1448450974_thumb.png

 

 

5-4      СВАРКА НЕРЖАВЕЮЩЕЙ СТАЛИ

 

Нержавеющая сталь по химическому составу подразделяется в основном на нержавеющую сталь на основе хрома и на основе хрома-никеля, по металлическому составу на аустенитную, ферритную. мартенситную, аустенитно-ферритную и дисперсионно-твердсющую нержавеющую сталь. Нержавеющая сталь, состав которой регламентирует стандарт JIS G43O3, в любом случае содержит хром в доле не менее 12% и превосходит остальные стали не только по коррозионной стойкости и термостойкости, но и по прочностным свойствам и перерабатываемости. Пользуясь этими превосходными свойствами, нержавеющая сталь находит широкое применение в посуде, кухонном инвентаре, химической промышленности, синтетическом химическом волокне, фармацевтической промышленности, нефтехимической промышленности, бумажной промышленности, судостроении, транспортных средствах, атомном оборудовании и пр.

Сварка нержавеющей стали, хотя производится почти любым методом, часто производится методом Аргонодуговой сварки в силу того, что не появляются брызги и шлак, форма сварного шва красива и качество сварного шва отличное.

 

5-4-1  Метод выбора материала присадочного металла

 

Хотя материалы присадочного металла регламентирует стандарт JIS Z3321 - 1985 (табл. 5.2), желательно использовать в принципе присадочный металл с таким же химическим составом, что и свариваемый основной металл, чтобы обеспечить сварочный шов коррозийной стойкостью и прочностным свойством. При сварке применяют постоянный ток и подключают к отрицательной полярности электрода. При сварке относительно тонкостенных листов или сварном соединении труб с формированием обратного валика, как защитный газ с обратной стороны обычно применяют аргон. Однако в последнее время при Аргонодуговой сварке без защиты обратной стороны в качестве сварочного материала для первого слоя, часто применяется присадочный металл, поверхность которого покрыта тонким слоем флюса, или присадочный металл, содержащий в себе флюс. В случае сварки толстостенных листов привлекает к себе внимание вышеизложенная Аргонодуговая сварка нагретой проволокой. Применяемая для этого метода сварки проволока такая же, что и в табл. 5.2. Пример сочетания аустенитной нержавеющей стали с каждым присадочным металлом приведен в табл. 5.3.

 

post-2215-0-45969900-1448453058_thumb.png

 

post-2215-0-41323600-1448453250_thumb.png

 

5-4-2 Подогрев,  температура  перед  наложением  последующего  слоя  и последующий нагрев

 

В случае аустенитной нержавеющей стали не нужен подогрев. Вернее, чтобы защитить сварной шов от горячей трещины, нужно поддерживать температуру перед наложением последующего слоя на уровне не более 150°С. Обычно также после сварки не производят последующий нагрев. В случае ферритной нержавеющей стали, чтобы предотвратить понижение пластичности и вязкости или холодную трещину при низкой температуре вследствие укрупнения кристаллического зерна, необходимы подогрев до 100 - 200°С, поддерживание температуры перед наложением последующего слоя и последующий нагрев после сварки до 700 - 800°С. В случае мартенситной нержавеющей стали сварочный жар приносит большой эффект закалки, так что для предотвращения трещины в сварном шве и восстановления вязкости сварного   шва   необходимы   подогрев   до   200   -   300°С,   поддерживание температуры перед наложением последующего слоя и последующий нагрев после сварки примерно до 700°С.

В последнее время как метод для дальнейшего повышения пластичности и вязкости сварного шва из мартенситной нержавеющей стали рекомендуется понизить температуру перед началом термообработки после сварки, то есть начальную температуру последующего нагрева, до минимальной температуры, не позволяющей образование холодных трещин. Кроме того, в некоторых случаях практикуется метод понижения температуры подогрева и последующего нагрева, используя присадочный металл из аустенитной нержавеющей стали, например, Y309, 309L, 399Мо, 310, 310S или прочие присадочные металлы с высокой пластичностью.

 

5-4-3 Инструкция по исполнению сварки

 

В случае Аргонодуговой сварки нержавеющей стали требуется обращать максимальное внимание на проварку корня шва, то есть наложение первого слоя, так что не будет преувеличением сказать, что от качества проварки корня шва зависят общие эксплуатационные качества сварного соединения. В табл. 5.4 - 5.6 приведены примеры стандартных режимов Аргонодуговой сварки стыковых соединений и тавровых соединений, а также пример режимов проварки корня шва горизонтальных неповоротных труб.

В частности, при сварке горизонтальных неповоротных труб требуется наиболее высокий уровень квалификации. Как правило, желательно начать сварку с положения 6 часов по часам, подняться слева и справа, при этом выполнять сварку по возможности симметрично, чтобы уменьшить деформацию при сварке.

 

5-4-4 Сварка с инородным металлом

 

В случае сварки нержавеющей стали с инородным металлом, в большинстве случаях другим металлом является мягкая сталь или низколегированная сталь. При этом, чтобы металл шва обладал достаточной пластичностью, доже когда разбавлен мягкой сталью или низколегированной сталью, используют присадочный металл с большим содержанием хрома и никеля, а именно Y309, Y309L,Y309Mo, Y310 и Y310S. Среди этих марок присадочные металлы па основе 309 по сравнению с тем на основе 310 содержат в аустенитной структуре феррит в доле несколько десятков процентов, так что не склонны образовывать горячие трещины.

На рис. 5.24 представлена зависимость структуры сваренного металла от коэффициента разбавления основного металла при наплавке углеродистой стали с используем 2 марок присадочного материала, а именно а и Ь. В случае присадочного материала а при коэффициенте разбавления 10% получается 5% феррита в сваренном металле. А в случае присадочного металла b при коэффициенте разбавления 25% получается также 5% феррита.

В табл.5.7 и 5.8 представлены пример разделок кромок для стыкового соединения стали с нержавеющим покрытием и пример сочетания присадочного материала для сварки ее переходного слоя. При сварке стали с нержавеющим покрытием должно обращать внимание на нижеприведенные пункты.

 

post-2215-0-38951400-1448453285_thumb.png

 

post-2215-0-77417000-1448453487_thumb.png

 

post-2215-0-08439500-1448453541_thumb.png

 

post-2215-0-94470400-1448453622_thumb.png

 

Примечание: Среди присадочных металлов для переходного слоя те, которые содержит в себе Mo, Nb. желательно применять к плакирующему материалу, содержащему в себе Mo, Nb, соответственно. Желательно использовать Y309L, когда в связи с тонкого плакирующего слоя требуется избежать рассеяния углерода из основного металла.

В случае наружной разделки кромок, сначала сварят первый слой со стороны основного металла с тем. чтобы наплавленный металл не был проплавлен до плакирующего слоя. Затем после завершения сварки со стороны основного металла вырубают плакирующий материал как можно меньше, пока не выставлен металл шва стороны основного металла. К сварке стороны плакирующего материала применяют присадочный металл, представленный в табл. 5.8. и по возможности понижают силу тока с тем, чтобы можно было сдержать разбавление основного металла. В случае внутренней разделки кромок, варят основной металл с внутренней стороны до того, как оставлено 3 - 5 мм до переходного слоя. Затем в зависимости от ограничителей сварного соединения, деформации, толщины плакирующего материала определят, или продолжить варить сторону плакирующего материала с использованием перечисленного в табл. 5.8 присадочного материала, или после вырубки корня шва сварят основной металл с обратной стороны и в конечном этапе сварят сторону плакирующего материала.

 

5-4-5 Управление тепловложением

В случае сварки аустенитной нержавеющей стали при температуре диапазона 550 - 800°С. в частности. 650 - 700°С. происходит выделение хромовых карбидов на границах аустенитного зерна, что ухудшает коррозийную стойкость. Однако в случае Аргонодуговой сварки в качестве защитного газа часто применяется аргон, так что гепловложение. выражаемые формулой (ток х напряжение)/скорость. не велико и. следовательно, ухудшение коррозийной стойкости не велико. Кроме того, с целью дальнейшего уменьшения сварочного тепловложения практикуется разные методы ускорения охлаждения, такие как импульсно-дуговая сварка на слабом токе, принудительное охлаждение с использованием медного блока водяного охлаждение как подкладки и непосредственное водяное охлаждение околошовной зоны.

Межкристаллитную коррозию можно предотвратить полностью, если, охладив резко с температуры примерно 1100°С, дают карбидам раствориться в твердом состоянии в аустенитной структуре полностью. Однако во многих случаях крупных свариваемых конструкций эта обработка невозможна, так что требуется учитывать использование особо низкоуглеродистой нержавеющей стали, в которой содержание углерода крайне ограничено, нержавеющей стали, в которой содержание титана или ниобия стабилизирует карбиды, и пр. В табл. 5.9 представлены примеры режима Аргонодуговой сварки листов толщиной стенки 3 мм с описанием о напряжении дуги.

 

 

post-2215-0-11521800-1448453720_thumb.png

 

  • Upvote 7
Ссылка на комментарий
Поделиться на другие сайты

5-5     СВАРКА АЛЮМИНИЯ И ЕГО СПЛАВОВ

 

Алюминий и его сплав, точка плавления которых находится в пределах 480 - 660°С. представляют собой металл, крайне склонный к окислению, так что для них применяется исключительно дуговая сварка в среде инертного газа. Алюминий и его сплав, удельный вес которых не велик и равен 2,7. удельная электропроводность и удельная теплопроводность которых велики, превосходят по свойству при низких температурах, коррозийной стойкости и перерабатываемоси, и относятся к полезному материалу. Следовательно, они применяются к летательным аппаратам, железнодорожным подвижным составам, судам, резервуарам для хранения сжиженного природного газа, машинам для химической переработки, сосудам высокого давления, теплообменникам, холодильным машинам и т.д. Однако их коэффициент теплового расширения в 2 раза больше чем сталь, так что размер деформации при сварке склонен к увеличению.

 

post-2215-0-07992300-1448453931_thumb.png

 

При Аргонодуговой сварке как источник питания применяют переменный ток, пользуясь эффектом очистки, разрушают пленку оксидов алюминия, которая покрывает поверхность основного металла тонким слоем и не склонна к расплавлению, и тем самым облегчают процесс сварки. В табл. 5.10 приведены присадочные металлы для Аргонодуговой сварки алюминия и его сплава. Также в табл. 5.11 и 5.12 приведены диаметры присадочного металла и формы разделки кромок, на рис 5.25 и 5.26 представлены диапазоны режимов Аргонодуговой сварки стыковых и тавровых соединений листов.

Кроме того, сочетание основных металлов с присадочными материалами также регламентируется в виде стандарта на производство работ по дуговой сварке в среде инертного газа, как представлено в табл. 5.13. Грязь и влага, прилипшая к поверхности присадочных металлов, грязь на разделках кромок. влажность в атмосфере может быть причиной образование раковин, так что следует обращать внимание на очистку разделок кромок, в частности, эксплуатацию и хранение присадочных металлов. В некоторых случаях понадобится предусмотреть сварочное помещение, в котором поддерживается низкая влажность для производства сварки.

 

post-2215-0-25945300-1448454047_thumb.png

 

post-2215-0-19269200-1448454235_thumb.png

 

post-2215-0-98827500-1448454237_thumb.png

 

post-2215-0-05230200-1448454243_thumb.png

 

post-2215-0-31076800-1448454366_thumb.png

 

  • Upvote 9
Ссылка на комментарий
Поделиться на другие сайты

5-6     СВАРКА МЕДИ И ЕЕ СПЛАВОВ

 

Медь и ее сплав благодаря превосходству по электропроводности и теплопроводности применяются как электрические материалы, и благодаря превосходству по коррозийной стойкости и технологичности находят широкое применение в установках жидкого кислорода, опреснительных установках, машинах химической переработки, судовых частях и пр. Точка плавления меди составляет 1083°С, то есть находится почти в середине точки плавления стали в 1500°С и точки плавления алюминия в 660°С. Теплопроводность меди в 8 pat больше, чем у мягкой стали, почти в 2 раза больше, чем у алюминия. Следовательно, при Аргонодуговой сварке требуется достаточный подогрев. Однако в случае медного сплава, теплопроводность которого меньше, чем медь, не требуется такая высокая температура подогрева, как в случае меди.

Меди и ее сплав делятся на разные марки, как регламентирует стандарт JIS НЗ 100. Чтобы получать бездефектные сварные соединения, нужно использовать бескислородную медь или раскисленную медь, в которой содержание кислорода невелико. Присадочные металлы, применяемые при сварке меди и ее сплава, приведены в табл. 5.14, однако, как правило, применяют присадочные металлы, которые по составу идентичны основному металлу. Кроме того, для улучшения потока расплава-металла и сплавления с основным металлом применяют и специализированные для Аргонодуговой сварки присадочные прутки, поверхность которых покрыта тонким слоем флюса.

Сварку TIG меди и ее сплава ведут с учетом, что;

В связи с тем. что теплопроводность в 8 раз больше чем сталь, вложенное при сварке тепло резко рассеивается, так что сплавление металла шва с основным металлом плохо и склонны образовываться несплавление   и   шлаковые   включения.   Чтобы   предотвратить   эти дефекты, хотя все зависит от материала основного металла, толщины стенки, формы разделки кромок и материала присадочного металла, в случае меди необходимы предварительный подогрев и температура перед наложением последующего слоя обычно до 350 - 500°С, иногда примерно до 600°С.

В связи с повышенным расширением и усадкой, которые в 1.5 раза больше   чем.   в   у   стали,   на   сварных   швах   сосредоточивается напряжение, что может привести к образованию трещин.   Гак что следует рассматривать форму разделки кромок,  способ установки ограничителей и при производстве многослойной сварки учитывать и выполнять   проковку   по   каждому   проходу.   Проковка   особенно полезна для низколегированных материалов.

Поддерживать   прилегающий   к   разделку участок  и   присадочный металл очищенными от оксидной пленки, масла и пр.. и тем самым заранее устранить причину возможных дефектов, таких как раковина и несплавление.

 

post-2215-0-59020600-1448454484_thumb.png

 

Сварку  ведут на постоянном  токе  с  отрицательной  полярностью электрода,   однако   в   случае   алюминиевой   бронзы   и   пр.   для предотвращения   включения   оксида   алюминия   сварку   ведут   на переменном    токе.    При    сварке    латуни    испаряющийся    цинк, превратившись в оксид цинка белого цвета, покрывает переднюю сторону зоны сварки и тем самым ухудшает обрабатываемость, так что   применяют  присадочные   материалы   из   кремнистой   бронзы, фосфористой бронзы или алюминиевой бронзы, которые не содержат цинк.  Среди  них  присадочный  материал  из  алюминиевой  бронзы применяют, когда особо требуется прочность.

Как вредные для сварки элементы можно перечислять свинец, сурьму и висмут. Эти элементы, образовав на границах зерна эвтектическую смесь и реагируя на сварной жар и усадочное напряжение, могут повлечь за собой трещины. Повышенное содержание фосфора также может привести к трещине. Не будет преувеличением сказать, что повышенное   содержание   свинца   не   способствует   производству сварки.

Типичным инородным материалом, который сваривается с медью иди ее сплавом, является мягкая сталь. При этом медь почти не растворяет железо в твердом состоянии и получается сварной шов структуры смешанных меди и железа, что повлечет за собой резко повышенную хрупкость. В границы зерна основного материала из мягкой стали, подвергающегося влиянию от тепла, попадает медь, что причиняет трещины. Чтобы предотвратить эти дефекты, целесообразно заранее выполнять наплавку медного сплава па поверхность разделки кромок стороны мягкой стали , по возможности уменьшая проплавление, или, сварив первый слой никелем или монелсм. второй слой и дальше сваривать заданным присадочным металлом.

Изменено пользователем Sakhalin_Cat
  • Upvote 9
Ссылка на комментарий
Поделиться на другие сайты

Для публикации сообщений создайте учётную запись или авторизуйтесь

Вы должны быть пользователем, чтобы оставить комментарий

Создать учетную запись

Зарегистрируйте новую учётную запись в нашем сообществе. Это очень просто!

Регистрация нового пользователя

Войти

Уже есть аккаунт? Войти в систему.

Войти
  • Последние посетители   0 пользователей онлайн

    • Ни одного зарегистрированного пользователя не просматривает данную страницу
×
×
  • Создать...