Перейти к содержанию

Электронно-лучевая сварка


Рекомендуемые сообщения

Электронно-лучевая сварка — сварка с высокой концентрацией теплоты, отличной защитой. Сущность процесса состоит в использовании кинетической энергии потока электронов, движущихся с высокими скоростями в вакууме. Для уменьшения потери кинетической энергии электронов за счет соударения с молекулами газов воздуха, а также для химической и тепловой защиты катода в электронной пушке создают вакуум порядка 10~4-10~6 мм рт. ст.

 

Достоинства электронно-лучевой сварки

  1. Высокая концентрация ввода теплоты в изделие, которая выделяется не только на поверхности изделия, но и на некоторой глубине в объеме основного металла. Фокусировкой электронного луча можно получить пятно нагрева диаметром 0,0002-5 мм, что позволяет за один проход сваривать металлы толщиной от десятых долей миллиметра до 200 мм. В результате можно получить швы, в которых соотношение глубины провара к ширине до 20: 1 и более. Появляется возможность сварки тугоплавких металлов (вольфрама, тантала и др.), керамики и т. д. Уменьшение протяженности зоны,"термического влияния снижает вероят-ность рекристаллизации основного металла в этой зоне.
  2. Малое количество вводимой теплоты. Как правило, для получения равной глубины проплавления при электронно-лучевой сварке требуется вводить теплоты в 4-5 раз меньше, чем при дуговой. В результате резко снижаются коробления изделия.
  3. Отсутствие насыщения расплавленного и нагретого металла газами. Наоборот, в целом ряде случаев наблюдается Дегазация металла шва и повышение его пластических свойств. В результате достигается высокое качество сварных соединений на химически активных металлах и сплавах, таких как ниобий, Цирконий, титан, молибден и др. Хорошее качество электроннолучевой сварки достигается также на низкоуглеродистых, коррозионно-стойких сталях, меди и медных никелевых, алюминиевых сплавах.
 

Проплавление при электронно-лучевой сварке обусловлено в основном давлением потока электронов, характером выделения теплоты в объеме твердого металла и реактивным давлением испаряющегося металла, вторичных и тепловых электронов и излучением. Возможна сварка непрерывным электронным лучом. Однако при сварке легкоиспаряющихся металлов (алюминия, магния и др.) эффективность электронного потока и количество выделяющейся в изделии теплоты уменьшаются вследствие потери энергии на ионизацию паров металлов.

 

В этом случае целесообразно сварку вести импульсным электронным лучом с большой плотностью энергии и частотой импульсов 100-500 Гц. В результате повышается глубина проплавления. При правильной установке соотношения времени паузы и импульса можно сваривать очень тонкие листы. Благодаря теплоотводу во время пауз уменьшается протяженность зоны термического влияния. Однако при этом возможно образование подрезов, которые могут быть устранены сваркой колеблющимся или расфокусированным лучом.

 

Основные параметры режима электронно-лучевой сварки — сила тока в луче, ускоряющее напряжение, скорость перемещения луча по поверхности изделия, продолжительность импульсов и пауз, точность фокусировки луча, величина вакуума. Для перемещения луча по поверхности изделия используют пере-мещение изделия или самого луча с помощью отклоняющей системы.

 

Отклоняющая система позволяет осуществлять колебания луча вдоль и поперек шва или по более сложной траектории. Низковольтные установки используют при сварке металла толщиной свыше 0,5 мм для получения швов с отношением глубины к ширине до 8:1. Высоковольтные установки применяют при сварке более толстого металла с отношением глубины к ширине шва до 25: 1.

 

Перед сваркой требуется точная сборка деталей (при толщине металла до 5 мм зазор не более 0,07 мм, при толщине до 20 мм зазор до 0,1 мм) и точное направление луча по оси стыка (отклонение не больше 0,2-0,3 мм). При увеличенных зазорах (для предупреждения подрезов) требуется дополнительный металл в виде технологических буртиков или присадочной проволоки. В последнем случае появляется возможность металлургического воздействия на металл шва. Изменяя величину зазора и количество дополнительного металла, можно довести долю присадочного металла в шве до 50%.

 

Недостатки электронно-лучевой сварки: возможность образования несплавлений и полостей в корне шва на металлах с большой теплопроводностью и швах с большим отношением глубины к ширине; для создания вакуума в рабочей камере после загрузки изделий требуется длительное время.

Ссылка на комментарий
Поделиться на другие сайты

Установки для электронно-лучевой сварки

 

Для создания электронного луча требуется довольно глубокий вакуум, такой, чтобы средняя длина свободного пробега электронов была больше расстояния от катода, где они образуются, до свариваемого изделия.

 

Установки для ЭЛС состоят из следующих основных узлов: вакуумной камеры с откачной системой, сва-рочной электронной пушки, создающей электронный луч, сварочного стола и системы перемещения деталей, источника силового питания электронной пушки, системы управления установкой. В зависимости от размеров свариваемого изделия в электроннолучевых установках используют камеры соответствующих размеров, позволяющих перемещать изделие для получения сварных швов заданной конфигурации.

 

Часто в камере размещают сварочные манипуляторы на несколько изделий, позволяющие осуществлять их смену, не открывая камеры, это значительно увеличивает производительность установок. Так как поперечные размеры источника сварочной теплоты — электронного луча в этих установках малы, к точности работы манипуляторов предъявляются повышенные требования. Так, отклонение свариваемого стыка от необходимого положения допускается от нескольких микрометров до 0,2 мм; отклонение скорости сварки не должно превышать ±1% от номинала.

 

Электронный луч — источник теплоты, разогревающий и расплавляющий металл, создается электронной пушкой, питающейся от силового выпрямителя, блока нагрева катода, а управление энергетическими параметрами луча — от блока управления модулятором (регулируется сила тока в луче), блока фокусировки (регулируется поперечное сечение луча) и блока отклонения луча (определяется местонахождение луча на детали и перемещение луча по ней).

 

Скорость перемещения луча по детали при сварке — скорость сварки определяется скоростью перемещения или вращения самой детали или скоростью отклонения луча. Механизмы сварочного манипулятора питаются от блока питания системы перемещения детали. Система питания вакуумных насосов и система измерения степени вакуума в различных частях установки также выделены в отдельный блок общей схеме электропитания.

Работа всех отдельных блоков общей электросхемы согласуется с помощью блока коммутации и управления.

  • Downvote 1
Ссылка на комментарий
Поделиться на другие сайты

Электронные пушки для ЭЛС

 

post-1-0-23448700-1426518926.gif

Схема электронно-оптической системы: 1 — изделие; 2 — электронный луч; 3 — катод; 4 — прикатодный управляющий электрод; 5 — анод; 6 — кроссовер; 7 — магнитная линза; 8 — система отклонения пучка; 9 — фокусное пятно; а0 — половинный угол расхождения луча; а1 — половинный угол сходимости луча на изделии; dкр — диаметр кроссовера; dфп — диаметр луча в фокусе

 

Электронные пушки

Электроннолучевая пушка предназначена для создания электронного луча, который и служит источником сварочной теплоты. Параметры электронного луча, соответствующие технологическому процессу сварки, определяют основные требования к конструкции электронной пушки (табл. 34). В сварочных установках электронная пушка состоит из следующих основных элементов: катод-источник электронов; анод — электрод с отверстием в середине для пропускания луча к изделию, подключенный к положительному полюсу силового выпрямителя; фокусирующий прикатодный олектрод (модулятор), регулирующий силу тока в луче; фокусирующая магнитная линза; отклоняющая магнитная система.

 

В диодных пушках прикатодный электрод имеет потенциал катода, в триодных — на него подается отрицательный относительно катода потенциал Uм для управления силой тока в пушке. Комбинированные, т. е. с электростатической и электромагнитной фокусировкой пучка одновременно, пушки наиболее распространены в сварочных установках. В них применяются термоэлектронные катоды, ток эмиссии которых определяется уравнением Ричардсона

Ie = Ae * T^2 * Sk * e^(-b/T)

где Sк — эмиттирующая площадь катода; Т — абсолютная температура катода; Ае, b — константы, характеризующие материал катода.

 

В сварочных установках катоды обычно изготовляют из тугоплавких металлов (тантала, вольфрама) или из гексаборида лантана. Конструкции катода уделяется особое внимание, так как условия его работы чрезвычайно тяжелые: высокая температура и интенсивное разрушение под влиянием ионной бом-бардировки, а требования к точности и сохранению размеров его при работе очень высокие. От самых незначительных деформаций катода зависят в сильной степени параметры электронного луча. Обычно срок службы катода составляет не более 20 ч непрерывной работы, редко до 50 ч.

 

Мощность электронного луча определяется произведением Рл = Uускор.*Iл и регулируется путем изме-нения тока в нем (Iл), что в любых электронных пушках достигается изменением температуры нагрева катода. Но такой способ очень инерционен и неудобен тем, что эта зависимость нелинейна. Новый тепловой режим, а следовательно, и новое значение тока, устанавливаются лишь через несколько секунд.

 

Более распространен метод регулирования тока путем подачи отрицательного, относительно катода, потенциала на управляющий катод Uм величиной 1-3 кВ. Скорость установления тока луча при импульсном открывании электронной пушки А.852.19 составляет примерно 2 мА/мкс. Для импульсного управления током луча в электрической схеме установки предусмотрены специальные электронные схемы, которые вырабатывают сигнал, подаваемый на модулятор. Обычно схема позволяет также плавно управлять величиной тока в луче.

 

Плотность тока в луче можно регулировать, меняя его диаметр на изделии без изменения величины общего тока, с помощью магнитной линзы. Такая линза представляет собой катушку с током, ось которой совпадает с осью луча. Для повышения эффективности работы ее помещают в ферромагнитный экран. В этом случае магнитное поле концентрируется в узком немагнитном зазоре.

 

Фокусное расстояние линзы (f, см) — расстояние от середины этого зазора до минимального сечения прошедшего сквозь линзу пучка -определяется конструкцией линзы, анодным напряжением пушки и током, протекающим по обмотке линзы.

 

Фокусное расстояние линейно зависит от анодного напряжения установки, но не зависит от силы тока в луче. Параметры сварного шва непосредственно зависят от постоянства энергетических характеристик электронною луча, в том числе его диаметра, так как его величина определяет удельную мощность луча. Поэтому в электронно-лучевых установках особое внимание уделяется постоянству анодного напряжения. Применяют специальные меры для стабилизации его, что позволяет устранить влияние колебания напряжения сети, пульсаций силового выпрямителя и т. п.

 

Отклоняющие системы применяют для установки луча на шов или некоторой корректировки его положения относительно стыка, перемещения луча вдоль оси стыка при выполнении сварного шва; периодического отклонения луча при сварке с поперечными или продольными колебаниями луча и при слежении за стыком во время сварочной операции. Магнитное поле направлено поперек направления движения электронов, а сила, отклоняющая траекторию электрона, действует перпендикулярно оси луча и направлению магнитного поля. 

 

Поскольку электронный пучок при отклонении расфокусируется, то в сварочных установках отклонение его осуществляется на небольшие углы, не более 7-10 град.

 

При сварке толстолистовых металлов, а также при сварке в промежуточном вакууме и при атмосферном давлении неизбежно повышение ускоряющего напряжения, так как этим путем прежде всего можно заметно уменьшить рассеяние пучка. Однако повышение ускоряющего напряжения затрудняет совмещение луча со стыком, требует специальной защиты персонала от рентгеновского излучения; аппаратура усложняется.

Ссылка на комментарий
Поделиться на другие сайты

Рабочие камеры для ЭЛС

 

Ввиду необходимости вакуума в камере, где образуется и формируется поток электронов, в большинстве случаев при электронно-лучевой сварке и само изделие размещают внутри вакуумной камеры, чтобы устранить рассеяние электронов на атомах и молекулах газов. Это также обеспечивает хорошую защиту металла шва. Но с другой стороны, это существенно ограничивает возможности применения такого способа сварки главным образом вследствие ограничения размеров свариваемых изделий и малой производительности процесса, так как много времени уходит на подготовку деталей к сварке. Поэтому наряду с высоко вакуумными установками разрабатывают и такие, где электронный луч выводится из камеры пушки, в которой поддерживаете* высокий вакуум, и сварка производится в низком вакууме (10-2 — 10-1 мм рт. ст.).

 

Специальные установки разрабатывают для микросварки в производстве модульных элементов и различного рода твердых радиосхем. Особенности заключаются в первую очередь в точном дозировании тепловой энергии, перемещении луча по изделию с помощью отклоняющих электрических и магнитных полей, совмещении нескольких технологических функций, выполняемых электронным лучом в одной камере. Поскольку вакуумные камеры в вакуумные системы стоят наиболее дорого, рациональности выбор* их конструкций уделяется большое внимание.

 

Все из существующих конструкций можно разделить условие на следующие группы: 1) универсальные установки для сварке изделий средних размеров; 2) универсальные и специализированные для микросварки малогабаритных деталей; 3) специализированные установки для сварки изделий малых и средних размеров 4) установки для сварки крупногабаритных изделий с полной герметизацией; 5) установки для сварки крупногабаритных изделий с частичной герметизацией места стыка; 6) установки для сварки в промежуточном вакууме.

 

Установки первой группы предназначены в основном для использования в исследовательских и заводских лабораториях а также в промышленности при единичном и мелкосерийном производстве. Они имеют вакуумные камеры объемом 0,001-4,0 м; и манипуляторы для перемещения свариваемых деталей, позволяющие осуществлять возможно более универсальные перемещения при выполнении сварных швов. Такие установки снабжают также системами наблюдения за областью сварки. Электронная пушка стационарная или перемещается внутри камеры с целью начальной установки луча на стык.

 

Установки для сварки крупногабаритных деталей отличаются наличием дорогостоящих вакуумных камер большого объема куда детали помещаются целиком. Часто электронные пушки которые имеют гораздо меньшие размеры, чем изделие, размещают внутри камеры. Сварной шов выполняется при перемещении самой электронной пушки. Иногда, особенно при сварке обе чаек кольцевыми швами, на камере размещают несколько пушек позволяющих за счет ликвидации продольного перемещения изделия также уменьшить размеры камеры.

 

Для снижения затрат на оборудование и повышения производительности установок последние выполняют иногда лишь с местным вакуумированием в области свариваемого стыка. Тогда откачиваемый объем сокращается, размеры установки в целом также получаются меньше, чем в том случае, если все изделие помещать в камеру. Иногда, например при сварке трубопроводов непосредственно при их укладке, без местного вакуумирования, задачу решить не представляется возможным.

 

В некоторых случаях рабочая камера установки может быть откачана лишь до промежуточного вакуума (10-1 — 10~2 мм рт. ст.). Диффузионный насос для откачки рабочей камеры становится ненужным (для камеры пушки он по-прежнему необходим, но малой мощности и малогабаритный). В таких установках лучепровод, соединяющий камеру пушки с камерой детали, проектируют с учетом создания необходимого перепада давлений между камерами; иногда в лучепроводе предусматривают даже промежуточную ступень откачки.

 

В электронно-лучевых установках особо важное значение приобретает точность изготовления и сборки свариваемых деталей и слежение за положением луча относительно свариваемого стыка. В системах слежения используют вторично-эмиссионные датчики, сигнал с которых преобразуется и направляет электронный луч на стык с помощью отклоняющих катушек.

 

Принцип работы такой системы заключается в следующем. При попадании электронного луча на поверхность металла из последнего выбиваются вторичные электроны, летящие в обратном направлении в камеру. Поставленынй на их пути датчик выделяет сигнал, пропорциональный их количеству, и передает его в систему управления положением луча. Число вторичных электронов зависит от состояния и формы поверхности металла, на которую попадает луч. Их число максимально при гладкой поверхности, перпендикулярной лучу, и уменьшается, если луч пересекает неровности. При попадании луча в глубокие полости число вторичных электронов уменьшается практически до нуля, так как все они поглощаются стенками полости.

 

Разработанная для контроля за положением луча относительно стыка система типа «Прогноз» работает следующим образом. Луч, сваривающий металл, периодически с частотой 20-50 Гц выводится из ванны, на большой скорости пересекает стык перед сварочной ванной (на расстоянии 5-7 мм) и мгновенно возвращается обратно. Вывод луча из ванны столь кратковременен, что на параметрах шва это не сказывается.

 

При пересечении лучом стыка происходит скачкообразное изменение сигнала вторичных электронов. Положение этого импульса сравнивается с положением луча при отсутствии тока в отклоняющей системе и при необходимости автоматически корректируется непосредственно в процессе сварки. Такая система обеспечивает точность слежения за стыком, исчисляемую сотыми долями миллиметра, и является исключительно быстродействующей.

 

В систему «Прогноз» заложены блоки, позволяющие управлять перемещениями луча, необходимыми в технологическом отношении: вести сварку с продольными, поперечными и кольцевыми колебаниями луча, выполняемыми с различной заданной скоростью и по различному закону.

Ссылка на комментарий
Поделиться на другие сайты

Для публикации сообщений создайте учётную запись или авторизуйтесь

Вы должны быть пользователем, чтобы оставить комментарий

Создать учетную запись

Зарегистрируйте новую учётную запись в нашем сообществе. Это очень просто!

Регистрация нового пользователя

Войти

Уже есть аккаунт? Войти в систему.

Войти
  • Последние посетители   0 пользователей онлайн

    • Ни одного зарегистрированного пользователя не просматривает данную страницу
×
×
  • Создать...