Service manual

Ver. 1.0

Contents

General	3
Technical data, switches and connectors	3-6
Mastertig function panels	7-10
Operating principle	11
IGBT gate pulse (2800/3500)	12
Voltage over the lower IGBT (2800/3500)	13
Voltage after the secondary diodes (2800/3500)	14
IGBTgate pulse (1400-2200)	15
Voltage over the lower IGBT (1400-2200)	16
Voltage after the secondary diodes (1400-2200)	17
Troubleshooting	18-20
Power source control card A001 block diagram	21
Mastertig-power source's TIG-section's functions	22
Signals between control cards A001 and A002	23
Signals between control cards A002 and A004	23
Control card A001 layout (1400/1500)	24
Control card A001 layout (2000/2200)	24
Control card A001 layout (2800/3500)	25
MSD 1-meter unit layout	25
Control card A002 layout (1500/2200)	26
Control card A002 layout (2800/3500)	26
Control card A004 layout (2800/3500)	27
Control card A001 operation check	27
Control card A002 operation check	28-29
Control card A004 operation check	30
Notes	31

General

Master- and **Mastertig**-power sources are MMA and TIG power sources designed for demanding professional use.

Master- and **Mastertig**-power sources are IGBT-inverters, controlled by PWM-principle. Operation frequency is approx. 18 kHz.

5 power source sizes are available; $1 \sim 140$ A, $1 \sim 150$ A, $3 \sim 220$ A, $3 \sim 280$ A and $3 \sim 350$ A

Technical data, switches and connectors

Master 1400

- 1 Main switch S001 and welding current connectors
- 2 Overheat protection signal lamp
- 3 Current adj. potentiometer

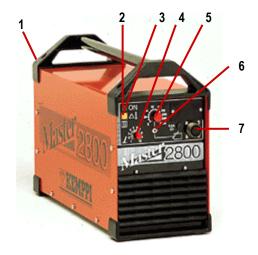
Supply voltage 1~,50/60 Hz	220V –10%240V +6%
Connection power 20% ED 60% ED 100% ED	140 A/ 6,2 kVA 105 A/ 4,4 kVA 75 A/ 2,9 kVA
Supply cable/ fuses	3 x 1,5S / 16 A slow
Welding current range MMA	15 A / 20,0 V140 A / 25,6 V
Suitable electrode sizes	Ø 1,53,25 mm
Welding power adj.	stepless
OCV	Approx. 80 V
Efficiency	80% (140 A / 25,6V)
Idling power	Approx. 10 W
Degree of protection / Casing class	IP 23
Weight	10 kg

Master 1500

- Main switch S001, welding current connectors and dynamics adjustment Overheat protection signal lamp Remote controller connection 1
- 2
- 3
- 4 Local / remote control
- 5 Current adjustment potentiometer

Supply voltage 1~,50/60 Hz	220V –10%240V +6%
Connection power 20% ED 60% ED 100% ED	150 A / 6,6 kVA 105 A / 4,4 kVA 75 A / 3,0 kVA
Supply cable/ fuses	3 x 1,5S / 16 A slow
Welding current range MMA (<i>TIG</i>	15 A / 20,5 V150 A / 26,0 V 5 A / 10,2 V150 A / 16,0 V)
Suitable electrode sizes	Ø 1,53,25 mm
Welding power adjustment	stepless
OCV	Approx. 80 V
Efficiency	80% (150 A / 26,0 V)
Idling power	Approx. 10 W
Degree of protection / Casing class	IP 23C
Weight	10,5 kg (TIG, 13,5 kg)
Auxiliary devices	Remote controllers C 100C, C 100D

Master 2200


- 1 Main switch S001, welding current connections and dynamics adjustment

- I/0-signal lamp
 Remote controller connecyor
 Overheat protection signal lamp
 Remote / local control selection
- 6 Current adjustment potentiometer

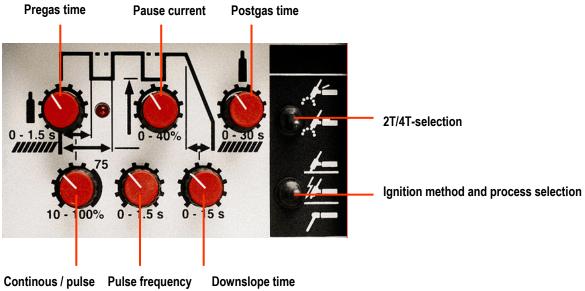
Supply voltage 3~,50/60 Hz	380V –10%415V +6%
Connection power 25% ED 60% ED 100% ED	220 A / 8,4 kVA 145 A / 5,5 kVA 110 A / 3,5 kVA
Supply cable / fuses	4 x 1,5S / 10 A slow
Welding current range MMA (TIG	15 A / 20,5 V220 A / 28,8 V 5 A / 10,2 V220 A / 18,8)
Suitable electrode sizes	Ø 1,54,0 (5,0) mm
Welding power adjustment	stepless
OCV	Approx. 80 V
Efficiency	82% (220 A / 28,8V)
Idling power	Approx. 10 W
Degree of protection / Casing class	IP 23C
Weight	12,5 kg (TIG, 16 kg)
Auxiliary devices	Remote controllers C 100C, C 100D

Master 2800 and 3500

- Main switch S001 and welding current connectors 1
- 2 I/0-signal lamp

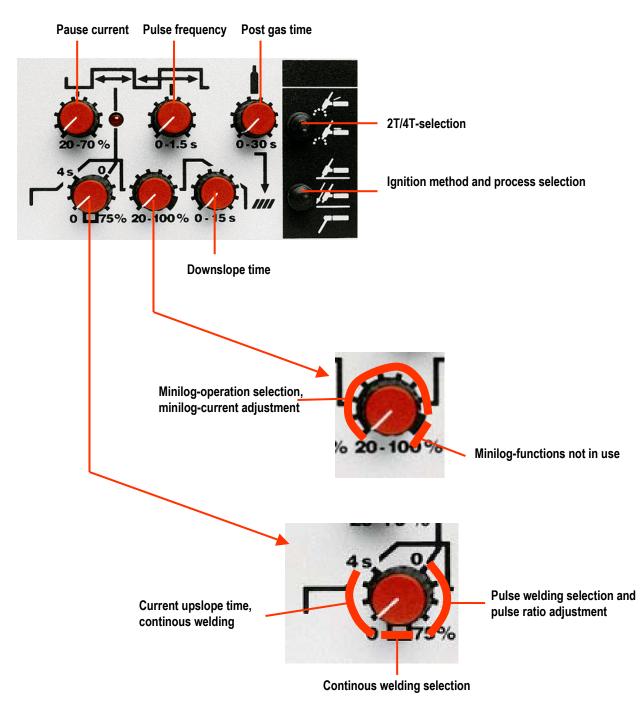
- Verheat protection signal lamp
 Overheat protection signal lamp
 Dynamics adjustment
 Current adjustment potentiometer
 local / remote control
- 7 Remote controller connector

Supply voltage 3~,50/60 Hz	380V –10%415V +6%	380V –10%415V +6%
Connection power 35% ED 60% ED 100% ED	280 A / 11,5 kVA 213 A / 8,5 kVA 165 A / 6,0 kVA	350 A / 15,0 kVA 267 A / 11,0 kVA 207 A / 8,0 kVA
Supply cable/ fuses	4 x 1,5S / 10 A slow	4 x 2,5S / 16 A slow
Welding current range MMA (<i>TIG</i> Suitable electrode sizes	15 A / 20,5 V280 A / 31,2 V 5 A / 10,2 V280 A / 21,2 V) Ø 1,5n. 5,0 mm	15 A / 20,5 V350 A / 34,0 V 5 A / 10,2 V350 A / 24,0 V) Ø 1,5n. 6,0 mm
Welding power adjustment	stepless	stepless
OCV	Approx. 75 V	approx. 75 V
Efficiency	83% (280 A/ 31,2 V)	83% (350 A/ 34,0 V)
Idling power	approx. 25 W	approx. 25 W
Degree of protection / Casing class	IP 23	IP 23
Weight	22 kg (TIG, 27 kg)	25 kg (TIG, 30 kg)
Auxiliary devices	Remote controllers C 100C, C 100D, C100T, MSD 1	Remote controllers C 100C, C 100D, C100T, MSD 1

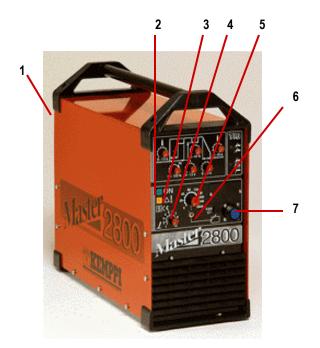


Mastertig 1500 and 2200

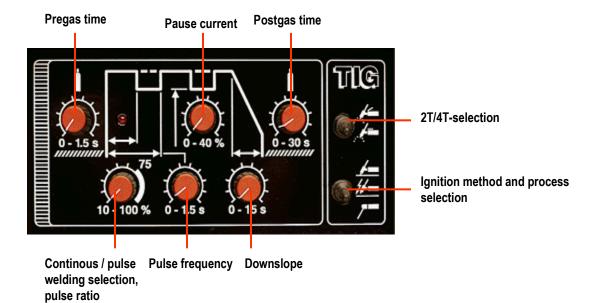
- 1 Main switch S001, dynamics adjustment and welding current connections
- 2 Current adjustment potentiometer
- 3 Overheat protection signal lamp
- 4 Local / remote control selection
- 5 Remote controller connector


Pulse panel

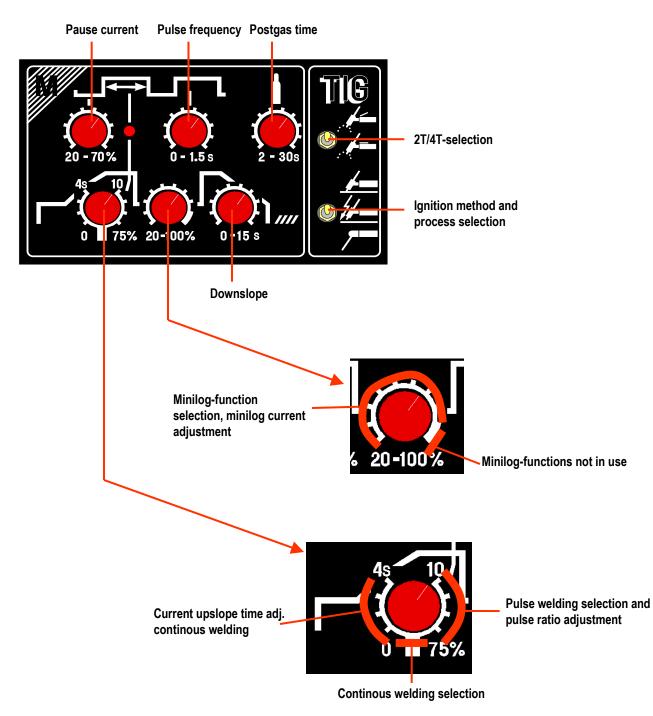
Continous / pulse Pulse frequency Downslope ti welding selection, pulse ratio adjustment



Minilog-panel

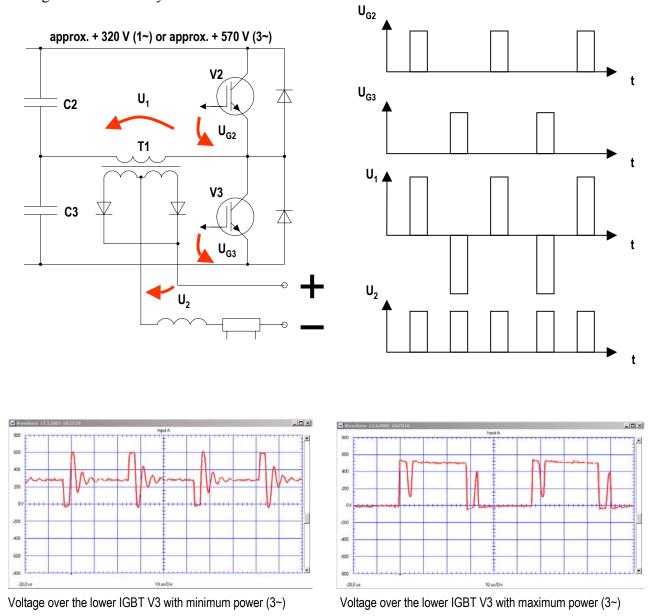

Mastertig 2800 and 3500

- Main switch S001 and welding current connectors 1
- 2 I/0-signal lamp
- Overheat protection signal lamp 3
- Dynamics adjustment 4
- Current adjustment potentiometer Local / remote control selection 5
- 6
- Remote controller connector 7

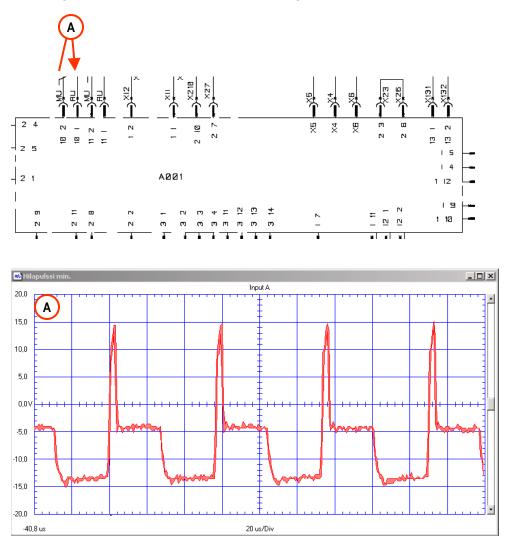

Pulse panel

adjustment

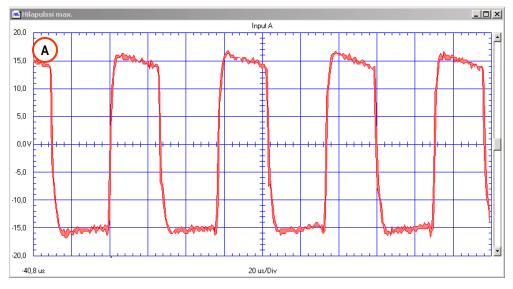
Minilog-panel



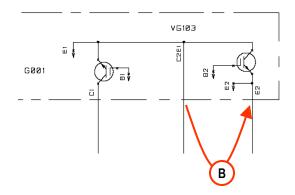
Operation principle


The power stage in **Master**- and **Mastertig**- power sources is a traditional half-bridge, where the intermediate circuit's dc-voltage is halved by load capacitors C2 and C3. IGBT-transistors are used as power switches. When both IGBTs are not conductive, no power is transferred. When the upper IGBT (V2) is conductive, there is positive voltage in the main transformer's (T1) primary, and when the lower IGBT (V3) is conductive there is negative voltage in the main transformer's (T1) primary.

Power is adjusted by altering the IGBT timings (PWM). The main transformer (T1) secondary voltages are rectified by a full-wave rectifier.

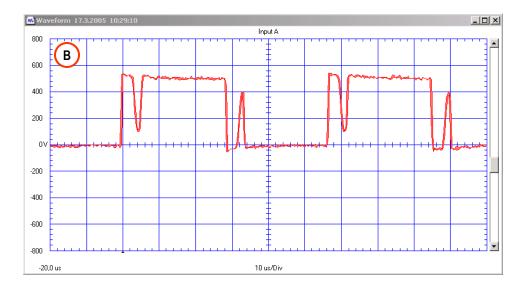


IGBT gate pulse (Master / Mastertig 2800/3500)

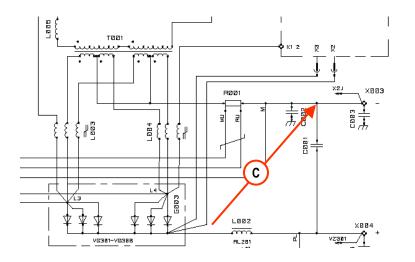

IGBT gate pulse with minimum power (2800/3500). Inverter operating frequency approx. 19 kHz (measuring point A).

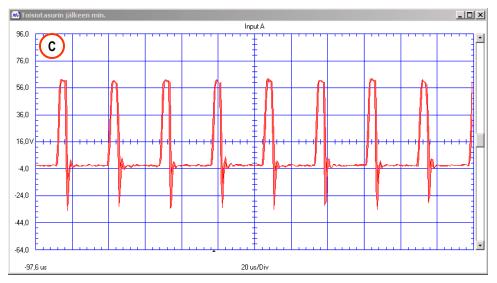


IGBT gate pulse with maximum power (2800/3500). Inverter operating frequency approx. 19 kHz (measuring point A).

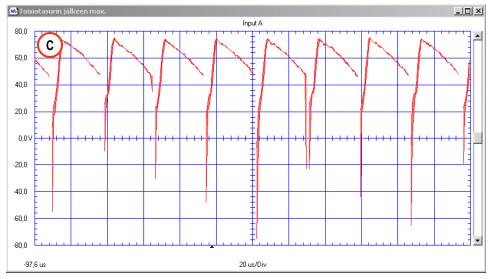


Voltage over the lower IGBT (Master / Mastertig 2800/3500)

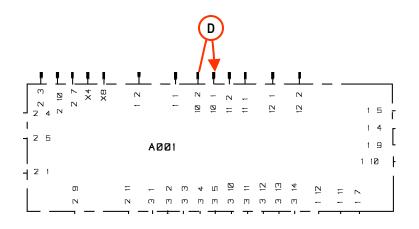

Voltage over the lower IGBT with minimum power (2800/3500). Inverter operating frequency approx. 19 kHz (measuring point B).

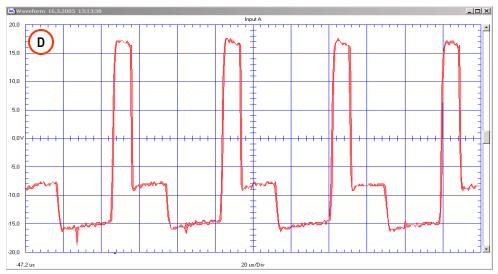


Voltage over the lower IGBT with maximum power (2800/3500). Inverter operating frequency approx. 19 kHz (measuring point B).

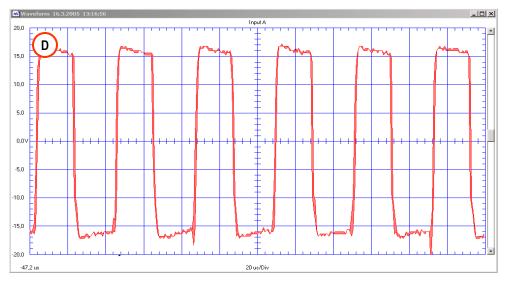


Voltage after the secondary diodes (Master / Mastertig 2800/3500)

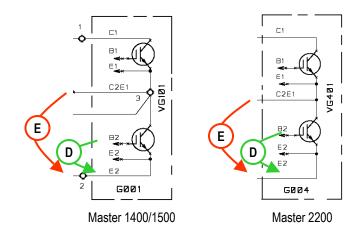

Voltage over the secondary diodes with minimum power(2800/3500). Frequency is approx. 38 kHz (measuring point C).

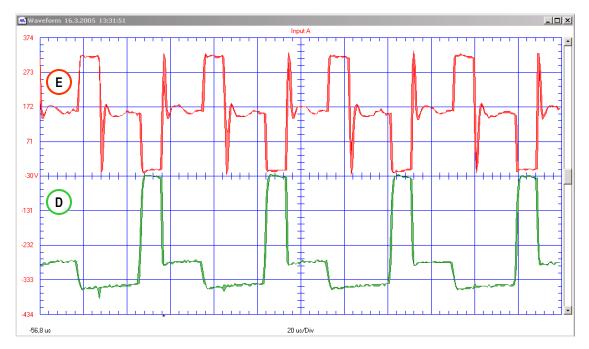


Voltage over the secondary diodes with maximum power (2800/3500). Frequency approx. 38 kHz (measuring point C).



IGBT gate pulse (Master / Mastertig 1400/1500/2200)





IGBT gate pulse with maximum power (1400/1500/2200). NOTE. Inverter operating frequency approx. 25 kHz (measuring point D).

Voltage over the lower IGBT (Master / Mastertig 1400/1500/2200)

Lower IGBT control (Gate pulse; measuring point D / Voltage over the lower IGBT; measuring point E).

Voltage after the secondary diodes (Master / Mastertig 1400/1500/2200)

•

۲ş

6003

Ϋ́

VG401

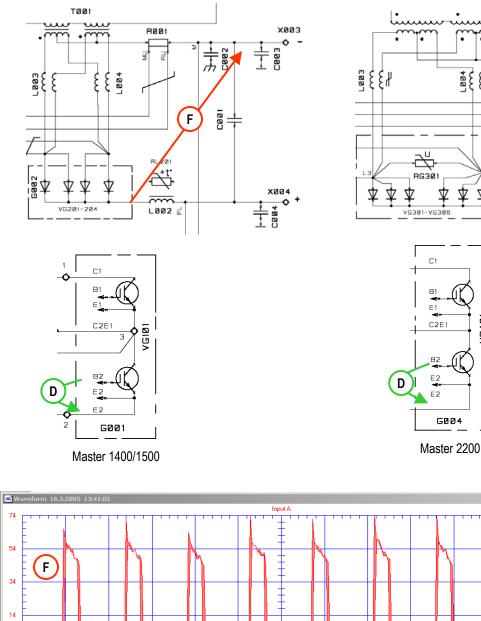
RØØ1

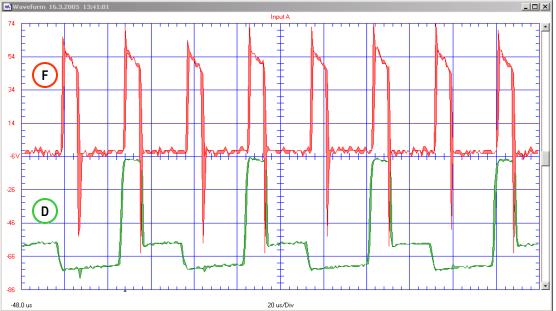
Ы

L002

_⁺t'

C002


F


CBD

X003

X00

÷*

Voltage after the secondary diodes (measuring point F) and lower IGBT gate pulse (measuring point D).

Troubleshooting

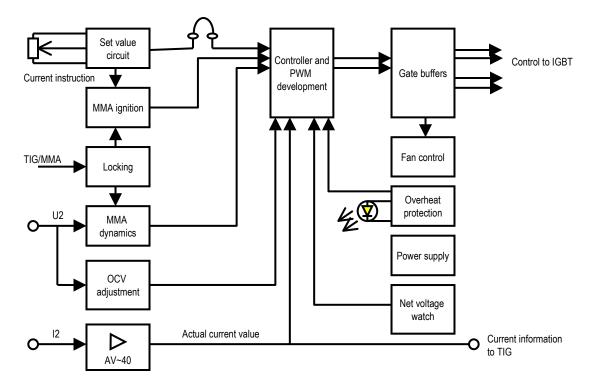
The machine may be repaired only by an authorized and licensed technician or workshop!

First do a visual check to find the possible loose connectors, broken wires or signs of overheating.

Also check the condition of the welding cables, welding guns / torches and all consumable parts.

Troubleshooting diagram

DISTURBANCE	POSSIBLE CAUSE	REMEDY
The power source will not start.	Net fuses have blown	Check the net fuses
MMA open circuit voltage is 0 V	Faulty supply cable	Check the supply cable condition
	Faulty main switch	Check the main switch condition
	Faulty current adjustment potentiometer	Check the potentiometer condition
	Faulty local / remote control selection switch (2200-3500)	Check the control method selection switch condition
	Faulty auxiliary transformer	Check the auxiliary transformer condition
	Faulty primary side power semiconductor	Check the condition of the primary rectifier and the IGBT-module
	Faulty control card A001	Check the control card A001 condition (see page 27)
	Faulty control card A002 (Mastertig)	Check the control card A002 condition (see pages 28 and 29)
	Faulty flat cable between control cards A001 and A002	Check the flat cable condition (see page 23)
The net fuses blow during startup.	Faulty primary side power semiconductor	Check the condition of the primary rectifier and IGBT-module
	Faulty main circuit card	Check the condition of the smoothing and load capacitors.
		Look for possible signs of insulation damages on main circuit card.
	Faulty secondary unit	Check the secondary diodes condition.
		anything wrong in the power source. This ve relatively high charging current! This


<u>The Joy of Welding</u> DISTURBANCE	POSSIBLE CAUSE	REMEDY
The power source will not deliver full power	A net fuse has blown	Check the net fuses
	Faulty supply cable	Check the supply cable condition
	Faulty main switch	Check the main switch condition
	Faulty primary side power semi- conductor	Check the primary rectifier and IGBT-module
	Faulty control card A001	Check the correct pulse ratio adjustment from control card A001 to IGBT gate (see pages 12 and 15)
	Faulty main circuit card	Check the main circuit card capacitors and their connections
	Faulty secondary unit	Check the condition the secondary diodes
	Faulty main transformer	Check the main transformer ferrites
	Faulty control card A002 (Mastertig)	Check the flat cable signals between control cards A001 and A002; pins 1 and 2 against the card's GND (see pages 28 and 29)
	Faulty flat cable between control cards A001 and A002	Check the flat cable's condition (see page 23)
The power source will not operate on TIG	Check power source's operation of from control card A001 and connection	on MMA. Disconnect the flat cable ect a shortcircuit loop to the flat cable 2. If the power source doesn't work
	Faulty flat cable between control cards A001 and A002	Check the flat cable condition (see page 23)
	Faulty control card A002	Check control card condition (see pages 28 and 29)
TIG-spark ignition doesn't work. Scratch ignition method is OK. On MMA the machine works	Faulty flat cable between control cards A001 and A002	Check the flat cable condition (see page 23)
OK.	Faulty control card A002	Check the control card A002 condition (see pages 28 and 29)
	Faulty control card A004 (2800/3500)	Check the control card A004 condition (see page 30)

DISTURBANCE	POSSIBLE CAUSE	REMEDY
TIG-process logic functions are	Faulty adjustment potentiometer	Check the adjustment
not working correctly		potentiometers
	Faulty flat cable between control cards A002 and A003	Check the flat cable
	control cards A002 and A003	(see page 23)
	Faulty control card A002	Replace control card A002
		(see pages 28 and 29)
Mastertig 3500 W-cooling unit	Faulty pressure switch	Check the pressure switch
doesn't stay on, when operated by it's start switch	Faulty control card A005	Check the control card A005 relays
by it's start switch	raulty control card A005	check the control card A005 relays
Mastertig 3500 W-cooling unit	The fuse F002 has blown	Check the fuse and the fuse holder
doesn't start, when operated by		
it's start switch	Faulty switch	Check the switch
	Faulty auxiliary transformer T004	Check the auxiliary transformer T004
	1004	1004
	Pump is jammed	Check and clean the pump
	1 5	1 1
	Faulty startup capacitor	Check the startup capacitor.
	Faulte generation	Check the reverse meters
	Faulty pump motor	Check the pump motor

Control card A001 block diagram

The functions of power source's control card A001 are built around the PWM-controller SG 3526.

Gate buffer

PWM-controller develops PWM-signals, that are amplified in the gate buffer and taken via a control transformer to the IGBT-module's gates.

Set value circuit

Set value circuit prepares the signal coming from the potentiometer suitable for the PWM-controller and protects the electronics from potentiometer circuit's insulation faults and possible overvoltages.

MMA ignition

The MMA ignition circuit develops an overcurrent spike to the set value current in order to ease the ignition. **MMA Dynamics**

The dynamics circuit develops overcurrent spikes to the set value current during short circuits.

Locking

The locking circuit prevents the MMA ignition current and dynamics operation on TIG.

OCV controller

The OCV circuit controls the power stage during idling so that the power losses are minimized.

Shunt amplifier

Current signal amplifier amplifies the shunt voltage suitable for the PWM-controller.

Fan control

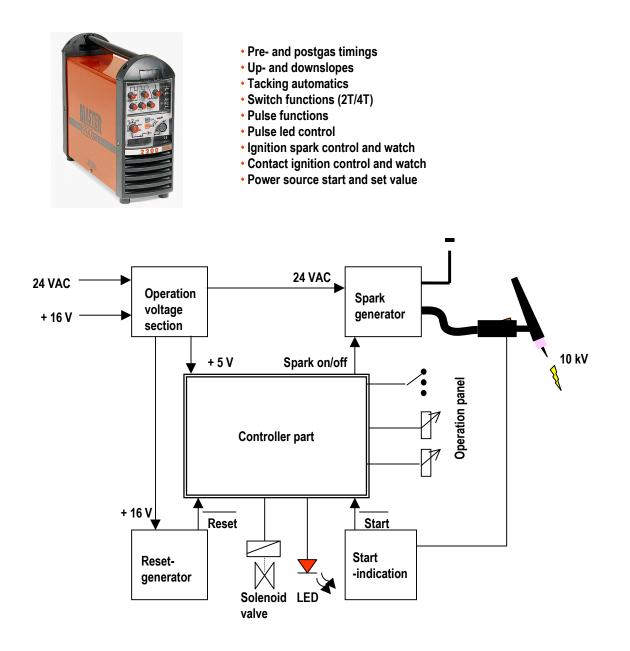
PWM-signal is used to control the fans on/off. During idling the PWMcontroller's pulse ratio is so low, that the fans are off. The fans start after 30 seconds from the start of welding, regardless of the welding current level. Post-welding cooling is active for 5 minutes.

Overheat protection

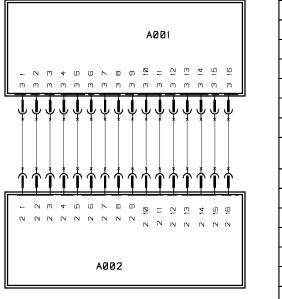
Overheat protection is activated by PTC-resistors.

Power supply

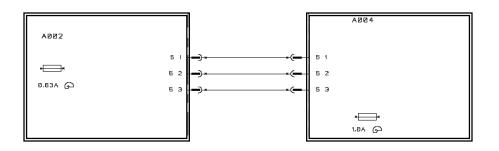
The power supply section forms the auxiliary voltages needed by control card A001. The power supply section also provides undervoltage watch.


Net voltage watch

Net voltage watch circuit stops the power stage, in case the net voltage rises above certain limit.

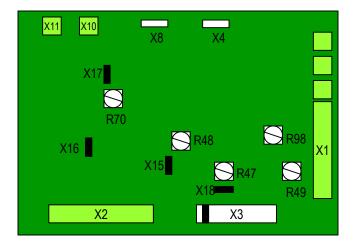

Mastertig-power source's TIG-section

The TIG-section provides these programmatic functions:

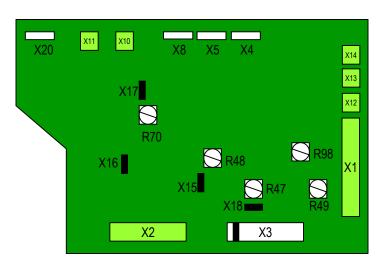


Signals between control cards A001 and A002 (Mastertig 1500-3500)

1	Current set value from power source (0,55 Vdc)
2	Current set value to power source (0,55 Vdc)
3	GND
4	GND
5	GND
6	GND
7	
8	Output voltage information from power source (OCV on MMA is approx. 75 Vdc)
9	
10	
11	
12	
13	MMA/TIG-selection (TIG = 4,5 Vdc, MMA = 0 V)
14	26 Vac from power source
15	26 Vac from power source
16	16 Vac from power source
10	


Signals between control cards A002 and A004 (Mastertig 2800-3500)

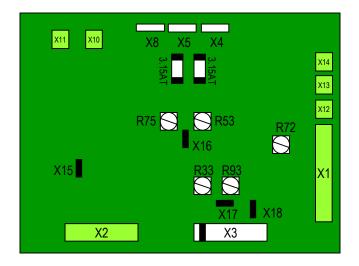
5/1	26 Vac
5/2	Spark generator on/off
5/3	Start switch detection
X6/3 (A004)	GND


Control card A001 layout (Master / Mastertig 1500)

	Closed	Open	
X15		•	ММА
X15	•		Scratch-TIG
X16	•		
X17		•	
X18		•	OCV approx. + 80 V
X18	•		OCV approx + 40 V

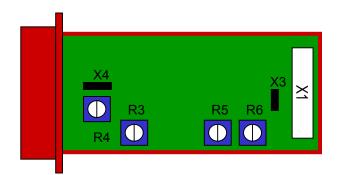
- R47 Maximum current
- R48 MMA ignition current
- R49 Minimum current
- R70 Inverter frequency
- R98 Set value min. (TIG)

Control card A001 layout (Master / Mastertig 2000/2200)



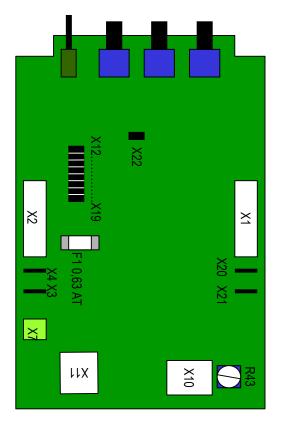
	Closed	Open	
X15		•	ММА
X15			Scratch-TIG
X16			Net voltage 3~ 400 V
X16		•	Net voltage 3~ 460 V
X17			Net voltage 3~ 460 V
X17		•	Net voltage 3~ 400 V
X18			OCV approx. + 80 V
X18		•	OCV approx. + 40 V

- R47 Maximum current
- R48 MMA ignition current
- R49 Minimum current
- R70 Inverter frequency
- R98 Set value min. (TIG)


Control card A001 layout (Master / Mastertig 2800/3500)

	Closed	Open	
X18		•	ММА
X18			Scratch-TIG
X15			Net voltage 3~ 400 V
X15			Net voltage 3~ 460 V
X16			Net voltage 3~ 460 V
X16			Net voltage 3~ 400 V
X17			OCV approx. + 80 V
X17		•	OCV approx. + 40 V

- R33 Maximum current
- R53 MMA ignition current
- R72 Minimum current
- R75 Inverter frequency
- R93 Set value min. (TIG)


MSD 1-meter unit layout (Master / Mastertig 2800/3500)

- R3 Set value current minimum
- R4 Set value current maximum
- R5 Voltage
- R6 Current
- X3 Short circuit loop must be disconnected in Mastertig 2800 / 3500-power sources
- X4 Machine size coding (Master and Mastertig 2800 / 3500)

Control card A002 layout (Master / Mastertig 1500/2200)

JUMPERS

When a jumper is disconnected: **X12** Tacking automatics goes off

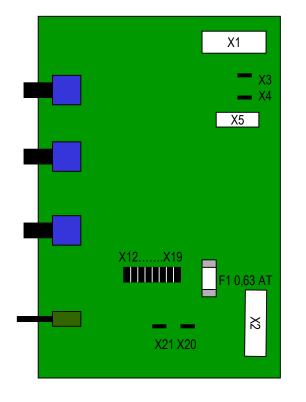
X13 Downslope time becomes non-linear, downslope times become longer with low currents

X14 Postgas becomes independent from set value, and adjustable linearly adjustable between 0 - 120s

X15 Downslope will go all the way to the minimum, and won't be cut-off at 15 % level of the welding current

X16 Contact ignition current changes 40A -> 25A

X17 Minilog-functions enabled


X18 Empty

X19 Current rise-up speed maximum

X22 ALWAYS KEEP CONNECTED!!

R43 Spark voltage adjustment

Control card A002 layout (Master / Mastertig 2800/3500)

JUMPERS

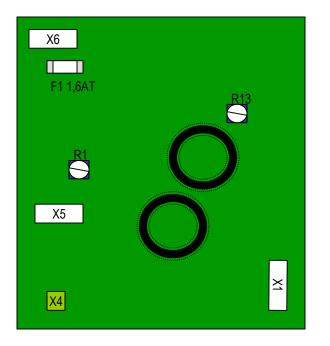
When a jumper is disconnected : **X12** Tacking automatics is off

 $\pmb{\mathsf{X13}}$ Downslope time is non-linear, downslope times become longer with low currents

X14 Postgas becomes independent from set value, and adjustable linearly adjustable between 0 - 120s

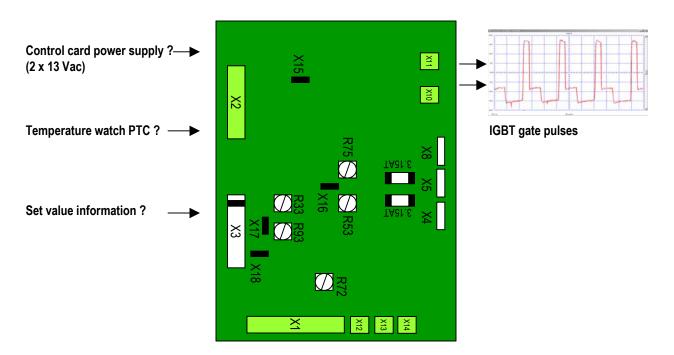
X15 Downslope will go all the way to the minimum, and won't be cutoff at 15 % level of the welding current

X16 Contact ignition current changes 40A -> 25A


X17 Minilog-functions enabled

X18 Empty

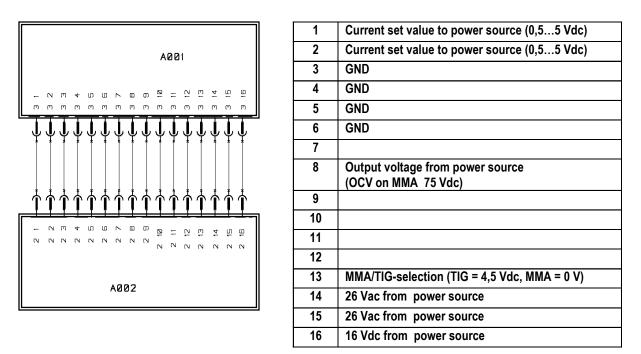
X19 Current rise-up speed maximum



Control card A004 layout (Master / Mastertig 2800/3500)

R1Power (Spark)R13Voltage (Spark)

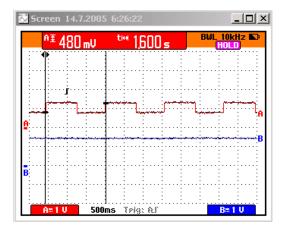
Control card A001 functional testing



Control card A001 develops the IGBT gate pulses. If the power supply part is OK, the fuses are intact, the temperature watch PTCs are OK and correct set value info is received from the potentiometer, then the gate pulses should be seen on connectors X10 and X11. When the machine is idling, one must note that it is actually running intermittently.

27

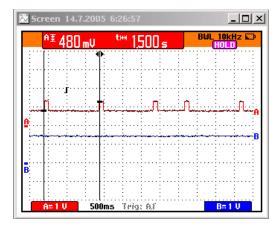
Control card A002 functional testing



The control card A002 uses the 24 Vac to control the solenoid valve and spark ignition, and transforms the + 16 V voltage to + 5 V for control electronics.

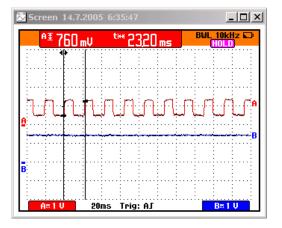
Control card A002 alters the signal taken from control card A001's (pin 1) set value circuit according to the adjustments of the operating panel (pin2). It also controls the spark ignition and solenoid valve.

The power source is controlled by the signal from flat cable's pin 2 and changes in the operating panel's adjustments affect signal in pin 2. On TIG the pin 2 has voltage only when the start is active and the machine is loaded.


Examples of the voltages on flatcable's pins 1 and 2:

A=Pin 2 voltage Pulse ratio approx. 50 %, pause current 40 % and cycle time 1,5 s (0,7 Hz)

B=Pin 1 voltage Set value information from control card A001's set value circuit

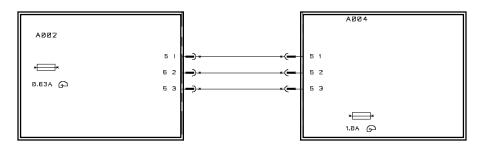

A=Pin 2 voltage Pulse ratio approx. 10 %, pause current 40 % and cycle time 1,5 s (0,7 Hz)

B= Pin 1 voltage Set value information from control card A001's set value circuit

	A₹∠	180,	nU	ti	** 2C	320	ms			10ki	iz 🗖	2
			•									
ι	<u>_n.</u>	٦	η	η.,	Π.	л.	Л.	л	1	,n	""ſi	A
0												
-	· · · · · · · · · · · · · · · · · · ·							~~~~				B
÷												
B												
Ï	A# 1	U	20	ms	Trig	LA :				B≡ 1	V	

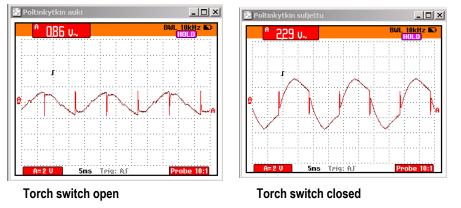
A= Pin 2 voltage Pulse ratio approx. 50 %, pause current 40 % and cycle time approx. 0,2 s (50Hz)

B= Pin 1 voltage Set value information from control card A001's set value circuit

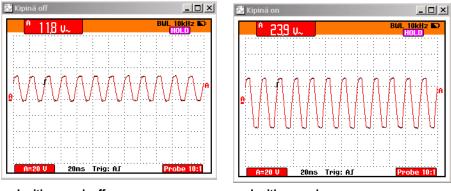

A= Pin 2 voltage

Pulse ratio approx. 50 %, pause current min. and cycle time approx. 0,2 s (50Hz)

B= Pin 1 voltage Set value information from control card A001's set value circuit


Control card A004 functional testing (Mastertig 2800/3500)

5/1	24 Vac
5/2	Spark generator on/off
5/3	Start switch detection
X6/3 (A004)	GND


Mastertig 2800/3500 control card A004 generates the ignition spark for TIG and it also reads the torchswitch states. The torch switch is separated from other electronics on the transformer, because the voltage inducted to the switch lines is almost full spark voltage (approx. 10 kV).

The torch switch state is measured by the connector X5/3, according to these voltage limits:

Measured between X5/3 and ground

After closing the torch switch the power stage will start and the output voltage will rise. Power for the ignition spark is taken from the power source's output voltage, from which a spark of approx. 10 kV is developed. The spark generator is started via connector X5/2.

Measured between connectors X5/1 and X5/2

Ignition spark off

Ignition spark on

Notes