Перейти к содержимому

  • Вебсварка в социальных сетях

Фотография

Технология анодирования алюминиевых профилей.Подготовка под сварку деталей из алюминия и его сплавов

алюминий технологии

  • Авторизуйтесь для ответа в теме
В теме одно сообщение

#1 Точмаш 23

Точмаш 23
  • Мастер
  • Cообщений: 2 988
  • Город:Юг России

Отправлено 18 Май 2020 21:21

Возникают вопросы по сварке профилей из сплавов АД 31,АД 35 и др.и один из них -Как удалить оксидную пленку(защитную или декоративную) с поверхности профиля  перед сваркой.Сначала надо разобраться,что такое анодирование алюминиевых сплавов.
 
 
    Технология анодирования алюминиевых профилей
  •  
  •  
  •  

Анодирование в обобщенном смысле – это электрохимический процесс образования стабильных оксидных покрытий на поверхности металлов. Анодные покрытия на алюминии могут формироваться с применением большого количества электролитов при постоянном токе, переменном токе или их комбинации. Для анодирования алюминиевых прессованных профилей обычно применяется электролиты только на основе серной кислоты, иногда с добавкой щавелевой кислоты [1]. 

Различие между анодированием и окрашиванием

Анодное покрытие образуется в результате реакции алюминия с ионами электролита. Получаемое покрытие имеет больший объем, чем исходное алюминиевое основание. Поэтому после анодирования обычно происходит увеличение размеров изделия. При обычном сернокислом анодировании это увеличение размера составляет около одной трети толщины анодного покрытия.    

Основное «размерное» отличие между анодным покрытием и слоем краски на алюминиевом изделии заключатся в следующем. Анодное покрытие образуется из самого алюминия, тогда как слой краски, например, жидкой, дополнительно наносится на поверхность алюминия (рисунок 1).  

1-anodirovanie-okraska.jpg

Рисунок 1 – Размерные различия между анодным покрытием и слоем краски

Процесс анодирования алюминиевых профилей

Существует много способов анодирования алюминиевых изделий в зависимости от их размеров. Например, алюминиевые заклепки, можно анодировать насыпью с помощью специального вращающегося барабана. Прессованные алюминиевые профили, которые обычно имеют длину от 6 до 8 м, анодируют на специальных навесках. Конструкция навесок обеспечивает надежное закрепление профилей и плотный электрический контакт для всех профилей. На одной навеске может устанавливаться до нескольких десятков профилей в один, два или более рядов (рисунок 2).     

2-vanna-anodirovaniya.jpg

Рисунок 2 – Схема процесса анодирования навески алюминиевых профилей [2]

В качестве источника тока при анодировании алюминия могут применяться источники постоянного или переменного тока, а также их комбинация. В стандартном сернокислом анодировании обычно применяют выпрямители постоянного тока с напряжением 24 вольта.    

Структура анодного покрытия

Известно, что анодное покрытие состоит из двух слоев. Пористый слой оксида алюминия вырастает на относительно тонком сплошном слое, который называют барьерным слоем (рисунок 3). Толщина этого барьерного слоя зависит от состава электролита и технологических параметров анодирования.

3-anodnaya-yacheyka.jpg

Рисунок 3 – Структура анодной ячейки

При сернокислом анодировании скорость роста пористого слоя постоянна при постоянной плотности тока. При плотности тока 1,3 А/дм2 она составляет 0,4 мкм/мин. Так как толщина барьерного слоя остается постоянной, то эта скорость роста должна соответствовать скорости растворения оксида алюминия внутри поры.    

Размеры оксидных ячеек анодного покрытия зависят от технологических параметров анодирования. Типичные размеры анодных ячеек для сернокислого анодного покрытия [2]:

  • Диаметр пор: 14,5-18 нм
  • Плотность размещения пор: 40-80·109 пор/см2
  • Диаметр ячейки: 40-53 нм
  • Пористость: 15 %
  • Толщина барьерного слоя: 14-18 нм
  • Толщина пористого слоя: 5-25 мкм
Технологические параметры сернокислого анодирования Сернокислый электролит

Для анодирования алюминиевых прессованных профилей во всем мире обычно применяют электролиты на основе серной кислоты.

Qualanod задает для сернокислого электролита следующие параметры [2]:

  • Концентрация свободной серной кислоты должна быть не выше 200 г/л при колебании внутри интервала 10 г/л от заданной величины;
  • Концентрация алюминия должна быть не выше 20 г/л, предпочтительно в интервале от 5 до 15 г/л.  
Температура ванны анодирования

Указания Qualanod по температуре ванны анодирования [2]:

  • для заданной толщины анодного слоя 5 мкм и 10 мкм: не выше 21 ºС
  • для заданной толщины анодного слоя толщины 15 мкм, 20 мкм и 25 мкм: не выше 20 ºС.
Плотность тока

Qualanod рекомендует среднюю плотность тока [2]:

• 1,2 – 2,0 A/дм² для анодного покрытия толщиной 5 мкм и 10 мкм
• 1,4 – 2,0 A/дм² для анодного покрытия толщиной 15 мкм
• 1,5 – 2,0 A/дм² для анодного покрытия толщиной 20 мкм
• 1,5 – 3,0 A/дм² для анодного покрытия толщиной 25 мкм.

Алюминиевые сплавы для анодированных профилей           

Для алюминиевых профилей, которые будут подвергаться анодированию, обычно применяют сплавы 6060 и 6063 с некоторыми ограничениями по содержанию магния и кремния, а также примесных элементов, таких как, железо, медь и цинк.

Обычно, чем чище алюминий и чем меньше в нем легирующих элементов, тем лучше он анодируется. Повышенное содержание примесей в сплаве приводит к образованию в анодном покрытии включений, которые неблагоприятно влияют на однородности его внешнего вида.   

См. о влиянии химического состава алюминиевых сплавов на качество анодированных профилей здесь.

Изменение толщины анодного покрытия в ходе анодирования

Толщина готового анодного покрытия зависит от общей длительности анодирования. Однако скорость роста толщины покрытия зависит от нескольких факторов, таких как, состав электролита, плотность тока и текущая длительность обработки.

В ходе анодирования происходят два конкурирующих процесса (рисунок 4):

  • непрерывный рост толщины анодного покрытия и  
  • растворение анодного покрытия под воздействием электролита.

 4-tolshchina-anodnogo-pokrytiya.jpg

Рисунок 4 – Изменение толщины покрытия в ходе анодирования [2]

Теоретическая величина толщины покрытия при постоянной плотности тока подчиняется известному закону Фарадея. Из этого закона следует, что оксид алюминия растет пропорционально количеству электричества, которое проходит через анод (алюминиевый профиль).

Влияние температуры электролита

Увеличение температуры электролита приводит к пропорциональному увеличению  скорости растворения образующегося анодного покрытия. В результате анодное покрытие становится более тонким, более пористым и более мягким.  

Влияние плотности тока

Интервал плотности тока, который применяется в стандартном анодировании составляет от 1 до 2 А/дм2 и в некоторых случая - до 3 А/дм2. Плотность тока ниже 1 А/дмдает мягкие, пористые и тонкие покрытия. С увеличением плотности тока анодное покрытие формируется быстрее и с относительно меньшим растворением электролитом. Поэтому покрытие получается более твердым и менее пористым. 

Влияние концентрации серной кислоты

Влияние повышенной концентрации серной кислоты на формирование анодного покрытия аналогично повышению температуры, хотя влияние температуры является более существенным. Высокая концентрация серной кислоты может ограничивать возможность получения анодного покрытия большой толщины из-за повышенной способности электролита растворять формирующийся пористый оксид алюминия.       

Цветное анодирование

Для получения цветного анодного покрытия на алюминиевых профилях применяют два основных метода окрашивания (рисунок 5) :

  • Адсорбционное окрашивание
  • Электролитическое окрашивание
Адсорбционное окрашивание

Алюминиевые профили с бесцветным анодным  покрытием без наполнения пор погружают в водный раствор органического или неорганического красителя. Поглощение красителя производится только на 3-4 микрона в глубину пор анодного покрытия (рисунок 5). Затем покрытие подвергают наполнению. Обычно применяют горячие растворы красителей – от 55 до 75 ºС, а длительность окрашивания – от 5 до 15 минут, иногда – 30 минут. Оптимальный диапазон величины рН раствора обычно составляет от 5 до 6.  

5-anodirovanie-cvetnoe.jpg
Рисунок 5 – Основные методы окрашивания
анодированных алюминиевых профилей [2]

Электролитическое окрашивание

Электролитическое окрашивание заключается в погружении анодированного изделия в раствор, содержащий соли металлов и приложении к нему переменного и постоянного электрического тока. В таких условиях на дне пор образуется металлический осадок. Цвет анодного покрытия зависит от состава электролита. Такие металлы, как олово, никель и кобальт, дают цвета от бронзового до черного, медь дает красный цвет.     

Цвет в определенной степени не зависит от толщины анодного покрытия, а зависит в основном от количества осажденного в поры металла. Так, 200 мг олова на квадратный метр поверхности дает светлую бронзу, 2000 мг – черный цвет [2]. 

Свойства анодного покрытия после электролитического окрашивания в целом аналогичны обычному (бесцветному) анодному покрытию. Стойкость цвета к воздействию солнечного света для большинства электролитов значительно выше, чем для адсорбционного окрашивания.  

Наполнение анодных покрытий

Наполнение анодного покрытия – бесцветного и цветного – это последний технологический этап процесса анодирования. Этот этап является очень важным для долговечности анодного покрытия, в том числе, его внешнего вида.

Гидротермическое наполнение

Наполнение анодного покрытия в горячей воде обеспечивает полное блокирование анодных пор за счет образования различных видов гидратированного оксида алюминия,  в основном, богемита [2]. 

Наполнение пор обычно производят путем погружения в воду при температуре 96-100 ºС при величине рН от 5,5 до 6,5. Длительность операции наполнения обычно составляет 2-3 минуты на каждый микрометр номинальной толщины анодного покрытия. Качество воды в ванне наполнения должно быть очень высокое. Такие загрязнители воды, как фосфаты, силикаты и фториды могут замедлять процесс наполнения пор.

Холодное наполнение

Известны так называемые «холодные» методы наполнения анодных покрытий, которые выполняются при температуре 25-30 ºС. В этом случае применяются растворы на основе фторидных соединения в присутствии солей никеля или кобальта [1, 2]. Применение этих методов требует высокой культуры производства и жесткого контроля качества наполнения. Кроме того, они требуют эффективной очистки стоков, содержащих тяжелые металлы.     

 

Источники:

1. Specifications for the QUALANOD Quality Label for Sulfuric Acid-Based Anodizing of Aluminium, Edition 01.01.2017.

2. TALAT Lecture 5203 – European Aluminium Association, 1994.  

https://alucom.ru/ar...nievyh_profilej


  • 4




#2 Точмаш 23

Точмаш 23
  • Мастер
  • Cообщений: 2 988
  • Город:Юг России

Отправлено 18 Май 2020 21:52

Подготовка под сварку деталей из алюминия и его сплавов
 

ТемыСварка алюминияСварные соединения.

При сварке деталей из алюминия и его сплавов предъявляются особые требования к подготовке деталей, материалов и оборудования. Среди сварщиков, занимающихся изготовлением конструкций из алюминия, бытует выражение: "Хорошо подготовлено — наполовину сварено".

Другие страницы по теме 

Подготовка под сварку деталей из алюминия  

:

Имеется ряд рекомендаций по подготовке поверхностей алюминиевых деталей и проволоки, которые отличаются от рекомендаций для стали. Например, не допускается зачищать поверхность под сварку абразивами, наждачной бумагой, дробеструйной обработкой и т. п. Помимо механической обработки кромок свариваемых деталей для придания им рациональной формы, облегчающей выполнение соединений, подготовка деталей под сварку и подготовка проволоки к сварке включает очистку их поверхности от загрязнений и оксидов.

 

Имеется большое количество рецептов подготовки поверхности под дуговую (лучевую); под точечную (шовную) сварку; для получения клеесварных соединений. Однако различия в подготовке невелики.

Подготовка деталей под сварку дуговую (лучевую).

Для выполнения сварных соединений I и II категории обязательной является химическая обработка поверхностей перед сваркой.

В производственной практике широкое распространение получил следующий процесс подготовки алюминиевых деталей и проволоки к сварке.

1. Прежде всего их поверхность очищают от консервирующей смазки и загрязнений, протирая ее ветошью, смоченной в бензине, уайт-спирите или других органических растворителях. В серийном производстве свариваемые детали обычно обезжиривают в негорячем водном растворе, содержащем 10 г/л NaOH, 40—50 г/л тринатрийфосфата Na3PO4 - 12Н2O, 5 г/л натриевого жидкого стекла Na2SiO3. Продолжительность процесса обезжиривания зависит от степени загрязненности поверхности металла и от температуры. При температуре раствора 60—70°С длительность обезжиривания обычно не превышает 3—5 мин.

2. После обезжиривания детали или проволоку погружают в 5%-ный водный раствор щелочи (NaOH или КОН), нагретый до 60—70°С. В результате взаимодействия со щелочью оксидная пленка стравливается с поверхности в течение 2—3 мин. После этого остатки щелочи и продукты реакции смывают с поверхности деталей сначала горячей, а затем холодной водой, одновременно протирая их волосяными щетками.

3. Сразу же после промывки детали пассивируют в 20%-ной азотной кислоте (HNO3), нагретой до 60—70°С. За 5—7 мин пребывания в растворе поверхность деталей покрывается новым, более плотным слоем оксида алюминия. Извлеченные из азотной кислоты детали промывают в холодной, а затем в горячей воде и сушат подогретым воздухом.

Обезжиривание и травление поверхности проволоки проводят по технологии, принятой для основного металла. Дополнительная обработка может быть различной: вакуумная сушка проволоки; механическая зачистка поверхности в специальном приспособлении; химическое или электрохимическое полирование поверхности.

Следует особо остановиться на подготовке поверхности деталей и проволоки из алюминий-литиевых сплавов.

При ручной дуговой сварке деталей из тонколистовых полуфабрикатов отмечается повышенная склонность соединений к образованию пор по границам шва, которая, снижая прочность сварного соединения при циклических нагрузках, существенно ограничивает область применения этих перспективных сплавов.

Установлено, что возникновение пористости связано с окислением поверхностных слоев при технологических нагревах и наличием в окисленном слое гидридов лития и магния, диссоциирующих при сварочном нагреве с выделением атомарного водорода, который попадает в расплавленный металл сварочной ванны.

Анализ полученных данных позволяет сделать заключение о том, что слой оксидов на основе MgO и Li2O у листов, подвергающихся нагреву до температуры не выше 400°С, имеет толщину 0,03—0,035 мм. Так как этот слой наиболее гигроскопичен, его удаление должно приводить к снижению пористости металла сварных швов. Поэтому была предложена технология подготовки кромок, включающая химическое фрезерование (глубокое травление) в растворе NaOH на глубину 0,04—0,05 мм.

Травление на глубину 0,04—0,05 мм позволило полностью исключить пористость на границах швов. Наблюдались отдельные рассеянные в металле шва поры размерами 0,1—0,15 мм, не превышающими допускаемых по техническим условиям. Методом гидростатического взвешивания установлено высокое качество сварных швов, полученных после травления образцов на глубину до 0,05 мм (табл. 1). Аналогичные результаты получены при автоматической сварке.

Таблица 1. Пористость швов на тонколистовых полуфабрикатах.

 

 

Подготовка под сварку свариваемых кромок Толщина удаляемого слоя, мм Суммарный объем пор см3 на 100г металла Травление в 15% растворе NaOH (80oC, 15 минут) и в 15% растворе HNO3 (50oC, 2 минуты) 0,01-0,02 0,2146-0,3318 Химическое фрезерование (глубокое травление) растворе, содержащем 200 г/л NaOH и 8 г/л Al (80oC, 15 минут) 0,04-0,05 0,0189-0,0245

Суммарный объем пор определен методом гидростатического взвешивания.

Подготовка деталей под сварку точечную (шовную)

Основной целью подготовки поверхности под контактную точечную сварку является достижение минимального и стабильного сопротивления в сварочном контакте электрод-деталь и стабильного невысокого сопротивления в контакте деталь-деталь. Наряду с этим необходимо обеспечить постановку большего числа сварных точек на свариваемой детали без зачистки рабочей поверхности электродов.

Влияние естественных пленок на выделение теплоты при контактной точечной сварке тонких деталей из алюминиевых сплавов значительно больше, чем при сварке более толстых, что вносит дополнительные технологические сложности. Внешняя поверхность свариваемых деталей подплавляется с образованием наружных выплесков, прожогов, а рабочая поверхность сварочного электрода после постановки уже нескольких первых точек выхолит из строя.

Исследованиями установлено и производственным опытом подтверждено, что объективной характеристикой качества подготовки поверхности, например, алюминиевых сплавов типа Д16 под контактную точечную сварку является контактное сопротивление участка сварки. Допустимое сопротивление ограничивается значением 150 мкОм. Кроме того, при подготовке поверхности необходимо обеспечить сохранность плакирующего слоя свариваемых листов, особенно малых толщин. Эти требования выполняются при химической подготовке, которая является наиболее удобным и надежным способом обеспечения удовлетворительного качества поверхности.

Например, технологический процесс химической подготовки листов из сплава Д16Т толщиной 0,5—0,6 мм включает в себя следующие операции:

 

 

1. Обезжиривание деталей в 2%-ном водном растворе моющего препарата при температуре 60—70°С в течение 2—3 мин.

2. Промывку деталей в теплой (35—50°С) проточной воде многократным погружением (5—8 раз).

3. Травление деталей в водном растворе NaOH (концентрация 40— 60 г/л, температура 35—45°С, длительность травления 30—60 с).

4. Промывку деталей в теплой (35—50°С) проточной воде многократным погружением (5—8 раз); смена воды — из расчета 15 л на 1 м2 поверхности детали.

5. Промывку деталей в холодной проточной воде многократным погружением (5—8 раз); смена воды — из расчета 25 л на 1 м2.

6. Осветление деталей в водном растворе азотной кислоты (концентрация 200—250 г/л, температура 16—30°С, 2—5 мин).

7. Промывку в проточной воде многократным погружением (5—8 раз); смена воды — из расчета 25 л на 1 м2.

8. Пассирование деталей в водном растворе ортофосфорной кислоты (Н3РO4) и калиевого хромпика (К2Сr2O7): концентрация H3PO4 — 50—120 г/л, К2Сr2O7 — 0,5—1,2 г/л; температура 26—34°С, длительность травления 15— 20 мин; отношение Н3РO4 к K2Cr2O7 поддерживается на уровне 100:1.

9. Промывку деталей в холодной проточной воде многократным погружением (5—8 раз); смена воды из расчета 25 л на 1 м2.

10. Сушку деталей в подогретом до 40—60°С воздухе.

11. Проверку контактного сопротивления образцов и свариваемых Деталей (контактное сопротивление должно иметь минимальные значения и быть стабильным).

Прессованные профили, механически обработанные детали и неплакированные листы перед травлением в ортофосфорной кислоте обрабатывают (травят) в растворе азотной кислоты 25—30%-ной концентрации в течение 1—1,5 ч при температуре 15—25°С с последующей промывкой в холодной проточной воде. Травление в азотной кислоте применяют для получения на поверхности деталей слоя чистого алюминия (не более 3% от толщины детали), при образовании которого улучшаются условия формирования сварного шва (уменьшается количество наружных выплесков и увеличивается промежуток времени до зачистки электродов).

Травленые детали тщательно промывают в холодной проточной воде и протирают жесткими волосяными щетками или хлопчатобумажными салфетками, затем сушат в камерах при температуре до 75°С или на воздухе, а после сушки хранят закрытыми от пыли, влаги и загрязнений.

 

 

Подготовка поверхностей под склеивание

Состояние поверхности склеиваемых металлов играет существенную роль, и основным требованием, предъявляемым к поверхности под склеивание, является обеспечение высокого и стабильного уровня адгезионных сил на границе раздела клей-металл.

Для достижения повышенной адгезионной прочности клеевого соединения при подготовке поверхности под склеивание используются различные методы, обеспечивающие оптимальное смачивание поверхности металла клеем и его растекание. Наиболее высокая прочность на сдвиг клеевых соединений из алюминиевых сплавов достигается в случае анодирования, наименьшая — в случае зачистки наждачной бумагой.

В отечественной практике основным способом подготовки поверхностей склеиваемых деталей из алюминиевых сплавов является анодирование в серной и хромовой кислотах. Второй вариант более совершенен: при анодировании в хромовой кислоте анодная пленка, как правило, не отслаивается от металла. Существуют и другие способы подготовки поверхности деталей из алюминиевых сплавов под склеивание. Один из них — химическое травление в смеси серной и хромовой кислот, так называемый пиклинг-процесс. Сначала детали обрабатывают в парах трихлорэтилена (5 мин), затем помешают в жидкий трихлорэтилен (15—20 мин) и после промывки в холодной воде обрабатывают в растворе серной кислоты (22,5 мас. ч.), бихромата натрия (7,5 мас. ч.) и воды (70 мас ч.). Травление осуществляется при температуре 60—65°С в течение 20—30 мин. После промывки детали подвергаются сушке на воздухе при температуре не выше 65°С. Обработанные этим способом детали пригодны для склеивания в течение 7 сут.

Для повышения адгезионной прочности и стабилизации уровня адгезии композиций применяют адгезионный грунт, который наносится на подготовленную поверхность и подвергается сушке при температуре 20°С в течение 30 мин. После этого на поверхности склеиваемых деталей наносят клей и отверждают его.

Адгезионный грунт позволяет обеспечить защиту подготовленной к склеиванию поверхности металла, сохранить ее активность и повысить адгезионную прочность клеевого соединения при его эксплуатации в условиях повышенной влажности при температуре 50—70°С.http://weldzone.info...a-i-ego-splavov


  • 4



Похожие темы



Темы с аналогичными тегами: алюминий, технологии

Количество пользователей, читающих эту тему: 0

0 пользователей, 0 гостей, 0 скрытых пользователей

Наверх